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Nanoscale ionic programmable resistors for analog deep learning are 1000 times smaller than
biological cells, but it is not yet clear how much faster they can be relative to neurons and synapses.
Scaling analyses of ionic transport and charge-transfer reaction rates point to operation in the
nonlinear regime, where extreme electric fields are present within the solid electrolyte and its
interfaces. In this work, we generated silicon-compatible nanoscale protonic programmable resistors
with highly desirable characteristics under extreme electric fields. This operation regime enabled
controlled shuttling and intercalation of protons in nanoseconds at room temperature in an energy-
efficient manner. The devices showed symmetric, linear, and reversible modulation characteristics with
many conductance states covering a 20× dynamic range. Thus, the space-time-energy performance
of the all–solid-state artificial synapses can greatly exceed that of their biological counterparts.

A
queous ionics withmobile Na+, K+, Ca2+,
and other ions underpin biological in-
formation processing. In neurons and
synapses, the action potential of mag-
nitude ~100 mV evolves over a char-

acteristic time scale of milliseconds, which
fundamentally limits the speed of thinking
and reflexes of animals. Because liquid water
decomposes at voltages >1.23 V, a weak action
potential is understandable. However, with
human-made solid-state neurons and syn-
apses (1–3) for analog machine learning, re-
search efforts are no longer limited by the
stability window of aqueous electrolyte. Fur-
thermore, it is also possible to fabricate de-
vices that are much smaller than biological
neurons, by a length-scale shrinkage factor
of 103 (from ~10 mm to ~10 nm). This pos-
sibility raises a fundamental question about
howmuch faster we can train such “artificial
synapses”—i.e., what is the ultimate speed
limit to solid-state ionics–based analog deep
learning? Also, when we approach that speed
limit, how energy intensive would the training
be, given that dissipative processes generally
produce more entropy per task the faster that
task is accomplished?
Fundamental ionics arguments seem to call

for high voltage and small length scales—that
is, an extreme programming field approach
(4–10). Transport of ions (such as H+) inside a
solid electrolyte (SE) layer and a mixed ionic-
electronic conductor (MIEC) conductance

channel layer, as well as charge-transfer re-
actions at the SE/MIEC interfaces, scale mono-
tonically and nonlinearly with the applied
voltage. Therefore the speed of change in the
nonvolatile state of artificial neurons should
increase with increasing electric field. How-
ever, there is a dielectric breakdown limit (11)
to solids, as well as a thermodynamic electro-
chemical stability window for SEs. Therefore,
the programming field should be raised as
high as possible, but not so high as to per-
manently damage the SE. In this work, we
demonstrate that such an approach produced
exceedingly fast nanoionic devices (5 ns), at
least 104 times as fast as biological synapses,
when the voltage was on the order of +10/
−8.5 V, yielding an extremely high electric
field of ~1 V/nm across the proton-conducting
phosphosilicate glass (PSG) SE. Surprisingly,
we also show that under appropriate operat-
ing parameters, this nonlinear ionic-electronic
device was robust and reversible, operating
successfully over millions of cycles. Although
the layout of our three-terminal device is
analogous to that of a solid-state battery, it
operated 1010 times as fast as conventional
solid-state batteries. Finally, even when ap-
proaching the ultimate speed limit of our
devices, the heat generated per program-
ming task was still favorable compared with
that generated by a human synapse (~10 fJ
per state).
Interest in engineering the ideal program-

mable resistor for analog computing appli-
cations has skyrocketed owing to increasing
workloads of deep learning problems (12–14)
and diminishing expectations for transistor
performance improvements through size scal-
ing (15). Highly optimized digital application–
specific integrated circuits that run reduced
precision arithmetic operations can still manage
inference tasks (16); however, the resolution
requirements for training tasks do not allow

sufficient bit reduction (17) and make beyond-
digital approaches imperative. The core idea
behind analog training accelerators is to pro-
cess information locally using physical device
properties instead of conventional Boolean
arithmetic—i.e., using Ohm’s and Kirchhoff’s
laws for the matrix inner product (18) and
threshold-based updating for the outer pro-
duct (19). However, the performance benefits
attained by analog training processors are de-
pendent on a set of very strict properties: The
device must be fast, energy-efficient, nonvola-
tile, and reversible, and itmust show symmetric
conductance modulation with many conduct-
ance states across a large dynamic range (20, 21).
Unfortunately, readily available memory tech-
nologies [e.g., phase-changing (22, 23), fila-
mentary (24), bulk-switching (25–28), and
ferroelectric (29) resistive memories] do not
completely satisfy these requirements. As a
result, demonstrations so far have required
additional control circuitry and serial opera-
tions (22–24) to correct such imperfections, at
the expense of substantially diminished space-
time-energy performance.
Because the core idea of neural network train-

ing is to tune the state parameters (weights)
through many small incremental modifica-
tions (12, 13), it is reasonable that devices
originally designed for information storage
purposes (i.e., memory technologies) do not
perform well in this information processing
application. Devices for analog deep learn-
ing (i.e., training) must be primarily optimized
for state transition (i.e., modulation) rather
than long-term state preservation (i.e., non-
volatility). The retention of the weight pa-
rameters is obviously important such that the
information learned from previous inputs is
not lost faster than the ongoing optimization.
However, given that the purpose of the net-
work is not to memorize correct labels for the
training dataset but to find generalized fea-
tures instead, retaining exact values for ex-
tended durations of time loses relevance. The
best example for this argument can be found
in digital neural network training, for which it
is a common practice to simulate weight decay
on values that could otherwise be retained for
indefinite time (30). Because the properties that
ensure long retention times contradict those that
enable high-speed and low-energy modulation
(31), we conclude that for training implementa-
tions the focusshouldbeon the latter two, trading
retention down to the ~100-s–to–1000-s range
for nanosecond and subpicojoule performance
[see the supplementary materials (SM)].
Any memristive technology that aims to

realize practical analog processors must
contain a high density of devices built on top
of standard complementary metal-oxide semi-
conductor (CMOS) logic and therefore must
rely on CMOS-compatible materials and in-
volve back-end-of-line–compatible processes.
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Moreover, device operation should not depend
on unconventional environmental condi-
tions such as high temperature or humidity.
With these concepts in mind, we developed
an integration-friendly technology with in-
organic solid materials that are native to
conventional Si processing: WO3 as the active
channel material, nanoporous PSG as the
protonic SE, and Pd as the hydrogen reservoir
and controlling gate. The basic operating prin-
ciple of the device relies on modulating the
channel conductance via the electrochemically
controlled intercalation of protons (chosen as
the ion with the smallest radius and lightest
mass) into WO3 (32, 33).
The rationale for choosing these materials is

as follows: WO3 is known for its conductance
modulation and electrochromism upon ion

intercalation (25, 32–34) with well-established
dynamics (32, 35). For analog deep learning
applications, the channel material must also
have high base resistivity (19), proton in-
sertion rate, and sensitivity. We found that
superior modulation characteristics result
from reactive sputtering of WO3 at room tem-
perature, followed by a 400°C annealing pro-
cess that both oxidizes and crystallizes the
material (see SM for process details). Regard-
ing the electrolyte, the material must simulta-
neously show very high electronic resistivity
and high proton conductivity. In our previous
work, we identified nanoporous PSG as an
outstanding SE (36–38) that displays both
properties at room temperature without the
need for hydration (i.e., humidity) (33). Fi-
nally, Pd was chosen as the gate metal and

hydrogen reservoir (PdHx), owing to its capa-
bility to take up and store hydrogen (39).
The three-terminal protonic programmable

resistors studied in this work (Fig. 1A) were
fabricated through a series of electron-beam
lithography processes. A self-aligned gate struc-
turewas used to scale downdevice dimensions,
avoiding mask alignment limitations. In a key
design aspect of this process, the Pd layer was
overlaid across a large region (Fig. 1B), which
was then used as an etch mask for the PSG
layer beneath. The height of the channel elec-
trodes (Au) was calibrated such that the PSG
layer could cover the sidewalls and the Pd layer
that overlappedwith the channel electrodeswas
disconnected from the gate electrode (Fig. 1C),
avoiding the charging of those regions and un-
necessary capacitance. This configuration was
intended to maximize energy efficiency. The
complete fabrication flow, additional metrology
results, and yield details can be found in the SM.
Before testing, the devices were exposed to

forming gas (3%H2 inN2) at room temperature
for protonation of the Pd reservoir and then
pumped down to vacuum. Future iterations of
these protonic devices will be encapsulated to
avoid environmental preconditioning steps.
Figure 2A shows the channel conductance
modulation of a 50-nm–by–150-nm device
with 10-nm-thick PSG for 1000 protonating
voltage pulses (V+ = 10 V) followed by 1000
deprotonating pulses (V − = −8.5 V). Between
successive pulses, the channel conductance
was read under drain-source voltage (VDS) =
0.1 V and gate current (IG) = 0 conditions
and averaged for ~1 s. The devices displayed
nearly ideal characteristics in terms of (i) high
modulation speed, responding to 5-ns voltage
pulses; (ii) nearly linear and symmetric behav-
ior for incremental and decremental changes;
(iii) conductance retention characteristics over
durations longer than ~1010 times the unit pulse
time (Fig. 2B); (iv) dynamic conductance range
of 20×; (v) optimal base resistance of 88megohms
for readout (19, 32); and (vi) preservation of these
ideal properties without any degradation over
extended time and use (Fig. 2C).
Moreover, the devices showed excellent en-

ergy efficiency under this ultrafast operation,
the gate current supplied during each pulse
being too small to be preciselymeasured for the
small devices. The energy consumption during
the transients was estimated to be ~2.5 fJ per
pulse (see SM), which is a technology-agnostic
overhead related to charging and discharging
the gate capacitance. On the other hand, the
energy consumed in proton transfer while the
5-ns voltage pulse was at its peak value was
estimated to be ~15 aJ per pulse for the device
whose performance is shown in Fig. 2. This
value was based on a dc gate current mea-
surement of ~30 nA at 10 V for a 750-nm–by–
1000-nm device. This latter value is associated
with the efficient shuttling of ions within the
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Fig. 1. Nanosecond protonic programmable resistors. (A) Three-dimensional illustration of the protonic
programmable resistors studied in this work. Au (yellow), WO3 (green), PSG (magenta), and Pd (gray)
layers are indicated. As a result of an engineered sidewall, the Pd layer that overlaps with the channel
electrodes is isolated from the remainder of the gate electrode. G, gate; D, drain; S, source. (B) False-colored
top-view SEM image of a fabricated device with a 30-nm–by–60-nm channel. (C) Transmission electron
microscopy (TEM) cross-sectional image of a protonic programmable resistor that had previously
been extensively modulated in the ultrafast regime.

Fig. 2. Ultrafast and energy-efficient modulation characteristics of protonic programmable resistors.
(A) Modulation performance of a 50-nm–by–150-nm protonic device with 10-nm PSG, showing fast (5 ns per
pulse), nearly linear, and symmetric characteristics. W, width; L, length. (B) Retention behavior of the protonic
device for ≈100 s at different conductance levels over the full dynamic range. (C) Endurance characterization of the
protonic device, displaying nondegrading modulation over 105 pulses conducted over 30 hours.
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gate stack under the high electric field. Addi-
tional data and calculations related to the energy
consumption can be found in the SM.
As a result, the combined material, process-

ing, and performance benefits of the all–solid-
state protonic devices demonstratedhere exceed
those of nonvolatile memory technologies.
To explain these desirable modulation char-

acteristics, we have developed a model for
device operation that consists of two key
parts: (i) proton transport in the PSG and (ii)
proton-coupled electron-transfer reaction
rates at the PSG/electrode interfaces. Both
processes have qualitatively similar formal-
isms and dependencies—the former is governed
by hopping conduction in a disordered solid
with random site energies (4–7, 10), whereas
the latter is determined by the Butler-Volmer
charge-transfer kinetics (8, 9). Conventionally,
a high activation energy for protons to be
freed from their sites (e.g., Si–O–H or P–O–H)
results in low ionic conductivity (40) and ul-
timately limits the operation speed at room
temperature. For amorphous SiO2, this activa-
tion energy was reported to be 0.38 eV, which
is much larger than the thermal energy in
ambient conditions (25.9 meV) (41).
In the presence of a high electric field, the

energy barrier to ion conduction is lowered
in the field direction, yielding an enhanced
proton hopping current

IG Vpulseð Þ º sinh
qaVpulse

2kBTdPSG

� �
ð1Þ

where q is the electron charge, kB is the
Boltzmann constant, T is the temperature, a
is the apparent hopping distance, and dPSG is
the thickness of the electrolyte (5). Owing

to the high resistance of the PSG layer, all of
the pulse voltage is assumed to drop across
the electrolyte (VPSG ~ Vpulse; see SM for de-
tails). Figure 3A shows the experimentally ob-
served conductance change per pulse (DGchannel)
as a function of pulse amplitude (Vpulse) and
pulse time (tpulse) for a device with dPSG = 5 nm.
Over a range of electric fields similar to that
detailed in Fig. 2, the results shown in Fig. 3
closely followed Eq. 1, as indicated by the
lines. Furthermore, experiments for devices
with different dPSG values allowed us to ex-
tract a hopping distance for the PSG of 5.6 Å
(Fig. 3B). This result is in good agreement
with previously reported values for amorphous
silica glasses (41–43).
In our case, the electric field (≈1 V/nm)

across the hopping distance (a ≈ 0.5 nm) was
so high that it might completely remove the
activation barrier within the PSG (≈0.4 eV).
This effect resolves the bottleneck of low pro-
ton conduction at room temperature, thus en-
abling high-speed operation. Such an effect
was predicted in simulations (44) but has not
been previously observed experimentally, as
the required conditions are beyond the break-
down field or the electrochemical stability
window of traditional electrolyte materials
(45). Instead, PSG allows a high critical field
(8 to 15 MV/cm) (46, 47) in addition to a
moderate base proton conductivity (36–38),
making it an ideal electrolyte choice for this
application. Moreover, under the classical
statistical mechanics scenario, reducing the
migration energy below a few kBT boosts the
likelihood of classical or quantum ballistic
motion of protons. Indeed, in liquid water,
protonmotion is known to have a pronounced

quantum character, with activationless quan-
tum nuclear dynamics in some exchange
events betweenwatermolecules (48). Thus, under
such high electric fields, “quantum ballistic”
transport of protons in solids may be realized.
Unlike the conductive filament devices con-

trolled by angstrom-scale short-range ion mo-
tion at the tip of the filament (49), our protonic
devices rely on long-range (~10 nm) and uni-
form partitioning of protons across the electrolyte
with the protons then behaving as dynamic
dopants in the entire HyWO3 channel (32, 35).
Furthermore, conducting filament formation
is assisted by Joule heating, with local temper-
atures rising as high as ~500 K (50), whereas
in our case ion transport is facilitated only by
the electric field with negligible temperature
increase (DT ~ 2 K; see SM). As a result, al-
though very-short-range ion transport at the
tip of the filament can readily occur in sub-
nanosecond time scales, the dependence of
filament properties on the local microstruc-
ture and microchemistry makes those devices
unpredictable and stochastic (2, 9, 49). On the
contrary, devices studied in this work are mod-
ulated by macroscopic chemical and electronic
modifications, which result in distinctly control-
lable and deterministic performance character-
istics. These benefits make their acceleration
to the nanosecond regime highly relevant.
The ability to rapidly shuttle protons within

bulk PSG at extreme speeds shifts the bottle-
neck of proton transport to the interfaces.
Although the hydrogen uptake rate of Pd is
high (51) and the PdHx/PSG interfacial reac-
tion is likely also efficient, the same cannot be
said for proton insertion into polycrystalline
WO3 (52), which shows up as a PSG/HyWO3
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Fig. 3. Voltage dependence of conductance modulation. (A) Channel
conductance change per pulse (DGchannel) for different pairs of pulse
amplitude (Vpulse) and duration (tpulse) for a device with 5-nm PSG thickness.
Points represent averaged experimental data over 1000 identical pulses for a
given Vpulse-tpulse pair, whereas the meshed surface represents the fitted
result. The apparent hopping distance (a) and power factor (b) values used to

fit the data are 5.6 Å and 1.2, respectively. The pulse time dependence of
the protonation-deprotonation dynamics was empirically approximated as a
power law (ºtpulse

1.2). (B) Estimation of the apparent hopping distance from
repeating the same experiment detailed in Fig. 3A for 25 devices selected
over four different chips with different PSG thicknesses. Error bars indicate the
SD of values acquired from different devices with the same PSG thickness.
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interfacial charge-transfer resistance. Because
protons do not have high diffusivity in HyWO3

(53), it is likely that the inserted species cannot
quickly vacate their sites near the interface,
thus further reducing the insertion rate in a
self-limiting fashion. These factors result in an
excess of highly energetic protons at the WO3/
PSG interface and may lead to H2 gas for-
mation and buildup at the interface (54).
The electrical signature and morphological

consequences of long–pulse-time stressing of
the devices are captured in Fig. 4. In Fig. 4A,
the device previously characterized in Fig. 2
was tested under the same Vpulse but for in-
creasing tpulse. Above 40 ns a cascading ef-
fect was apparent, in which the conductance
change increased with each pulse, ultimately
causing device failure for 90-ns pulses. A
scanning electron microscopy (SEM) image
of the device after this experiment is shown
in Fig. 4B, whereas Fig. 4C shows an image of
another device stopped at earlier stages (corre-
sponding to the 40-ns pulse regime shown in
Fig. 4A). These images show damage features
that we suggest were consistent with H2

gas evolution at the PSG/HyWO3 interface,
nanobubble formation, and stress buildup.
Most importantly, as shown in Fig. 2C, no

degradation was observed under high-speed
(5 ns) operation. To provide further evidence
of good endurance characteristics in the ultra-
fast regime, we performed electron energy-loss
spectroscopy (EELS) for the SE in fresh and
tested devices. Figure 4D shows that the Si L2,3
energy-loss spectra were similar in active and
inactive regions across the PSG layer, which
indicates that there was no stoichiometry
change or that the change was too subtle to
be detected. Considering that the widest
electrochemical stability window for room

temperature protonic electrolytes was pre-
viously ~3.35 V (55), we attribute our de-
vices’ ability to operate stably and reversibly at
10 V/−8.5 V to the operation at nanosecond
transients, where the PSG does not have to
conform to the thermodynamic stability re-
quirement for electrolytes (established after
quasi-static wait times). Furthermore, these
short time scales may simply be too fast for
oxygenmotion (slower than that of protons),
which would otherwise cause degradation of
material properties. We believe these are two
key physical dynamics underlying the no-
damage “protonic breakdown,” a transient
phenomenon that we took advantage of in this
novel ultrafast long-range transport regime.
In summary, we explored the limits of all–

solid-state ionics to answer the question of
how much faster an electrochemical artificial
synapse can operate relative to its biological
counterpart. Under extreme electric field con-
ditions, we demonstrated ultrafast modula-
tion of nanoscale protonic programmable
resistors with outstanding energy efficiency.
Moreover, the devices exhibited many non-
volatile channel conductance states with good
retention across a large and ideal dynamic
range, which could be programmed reversibly,
repeatedly, and symmetrically. Operation of
the devices at extreme electric fields across the
stack without any material degradation is the
key breakthrough to enable such performance.
Under these conditions, the activation ener-
gies that govern proton transport as well as
charge-transfer reactions at the interface were
substantially lowered, thus resulting in opera-
tion speed enhanced by six orders of magni-
tude at room temperature. Beyond artificial
synapses, these findings open up possibilities
in fields that require fast ion motion, such as

microbatteries, artificial photosynthesis, and
light-matter interactions.

REFERENCES AND NOTES

1. V. K. Sangwan, M. C. Hersam, Nat. Nanotechnol. 15, 517–528
(2020).

2. Q. Xia, J. J. Yang, Nat. Mater. 18, 309–323 (2019).
3. M. A. Zidan, J. P. Strachan, W. D. Lu,Nat. Electron. 1, 22–29 (2018).
4. B. Roling, L. N. Patro, O. Burghaus, M. Gräf, Eur. Phys. J. Spec.

Top. 226, 3095–3112 (2017).
5. A. Röthel, S. Friedrich, R. Lühning, L. Heuer, Z. Phys. Chem.

224, 1855–1889 (2010).
6. L. Onsager, Science 166, 1359–1364 (1969).
7. M. J. Dignam, J. Phys. Chem. Solids 29, 249–260 (1968).
8. T. Erdey-Grúz, M. Volmer, Z. Phys. Chem. 150A, 203–213 (1930).
9. D. Ielmini, IEEE Trans. Electron Dev. 58, 4309–4317 (2011).
10. S. Menzel, U. Böttger, M. Wimmer, M. Salinga, Adv. Funct.

Mater. 25, 6306–6325 (2015).
11. F. Palumbo et al., Adv. Funct. Mater. 30, 1900657 (2020).
12. W. Fedus, B. Zoph, N. Shazeer, arXiv:2101.03961 [cs.LG] (2021).
13. T. B. Brown et al., in Advances in Neural Information Processing

Systems 33 (NeurIPS2020), H. Larochelle, M. Ranzato,
R. Hadsell, M. F. Balcan, H. Lin, Eds. (Curran Associates,
2020), pp. 1877–1901.

14. E. Strubell, A. Ganesh, A. McCallum, in Proceedings of the 57th
Annual Meeting of the Association for Computational Linguistics,
A. Korhonen, D. Traum, L. Màrquez, Eds. (Association for
Computational Linguistics, 2019), pp. 3645–3650.

15. I. L. Markov, Nature 512, 147–154 (2014).
16. J. Choi et al., in Proceedings of the 2nd SysML Conference

(2019); https://mlsys.org/Conferences/2019/doc/2019/168.pdf.
17. X. Sun et al., in Advances in Neural Information Processing

Systems 32 (NeurIPS2019), H. Wallach et al., Eds. (Curran
Associates, 2019); https://proceedings.neurips.cc/paper/2019/
file/65fc9fb4897a89789352e211ca2d398f-Paper.pdf.

18. K. Steinbuch, Kybernetik 1, 36–45 (1961).
19. T. Gokmen, Y. Vlasov, Front. Neurosci. 10, 333 (2016).
20. T. Gokmen, M. Onen, W. Haensch, Front. Neurosci. 11, 538 (2017).
21. S. Agarwal et al., in Proceedings of the 2016 International

Joint Conference on Neural Networks (IJCNN) (IEEE, 2016),
pp. 929–938.

22. G. W. Burr et al., IEEE Trans. Electron Dev. 62, 3498–3507 (2015).
23. S. Ambrogio et al., Nature 558, 60–67 (2018).
24. H. Jiang et al., Sci. Rep. 6, 28525 (2016).
25. S. Kim et al., in 2019 IEEE International Electron Devices

Meeting (IEEE, 2019), pp. 847–850.
26. Y. Li et al., Adv. Mater. 32, e2003984 (2020).
27. Y. van de Burgt et al., Nat. Mater. 16, 414–418 (2017).
28. E. J. Fuller et al., Adv. Mater. 29, 1604310 (2017).
29. A. Chanthbouala et al., Nat. Mater. 11, 860–864 (2012).
30. A. Krogh, J. A. Hertz, in Advances in Neural Information

Processing Systems 4 (NIPS 1991), J. Moody, S. Hanson,
R. P. Lippmann, Eds. (Morgan-Kaufmann, 1991), pp. 950–957.

Onen et al., Science 377, 539–543 (2022) 29 July 2022 4 of 5

Fig. 4. Modulation dynamics for short and long pulse durations. (A) Channel
conductance modulation of the device whose performance is presented in Fig. 2 for
increasing pulse duration under the same programming voltages. Between pulses,
the channel conductance is read and averaged for ≈1 s. (B) SEM image of the device

after the experiment shown in (A). (C) SEM image of another device captured during
early degradation. (D) Si-L2,3 EELS spectra of the PSG layer for tested (red and
orange) and fresh (blue) devices. The testing conditions of the device were identical
to those given in Fig. 2, operating under the ultrafast regime only.
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Speed limit for solid-state nanoionics
The speed of biological information processing in neurons and synapses is limited by the aqueous medium through
which weak action potentials of about 100 millivolts propagate over milliseconds. Above 1.23 volts, liquid water
decomposes. Artificial solid-state neurons are not limited by such time and voltage constraints and can also be
fabricated at the nanoscale, 1000 times smaller than their biological counterparts. Using complementary metal-oxide
semiconductor–compatible materials, Onen et al. prototyped nanoscale protonic programmable resistors that can
withstand high electric fields of around 10 megavolts per centimeter and which have energy-efficient modulation
characteristics at room temperature. The proposed devices are 10,000 times faster than biological synapses and offer
a promising direction for implementing various applications that can benefit from fast ionic motion. —YS
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