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Abstract

Efforts to realize analog processors have skyrocketed over the last decade as having
energy-efficient deep learning accelerators became imperative for the future of infor-
mation processing. However, the absence of two entangled components creates an
impasse before their practical implementation: devices satisfying algorithm-imposed
requirements and algorithms running on nonideality-tolerant routines. This thesis
demonstrates a near-ideal device technology and a superior neural network training
algorithm that can ultimately propel analog computing when combined together. The
CMOS-compatible nanoscale protonic devices demonstrated here show unprecedented
characteristics, incorporating the benefits of nanoionics with extreme acceleration of
ion transport and reactions under strong electric fields. Enabled by a material-level
breakthrough of utilizing phosphosilicate glass (PSG) as a proton electrolyte, this op-
eration regime achieves controlled shuttling and intercalation of protons in nanosec-
onds at room temperature in an energy-efficient manner. Then, a theoretical analysis
is carried out to explain the infamous incompatibility between asymmetric device
modulation and conventional neural network training algorithms. By establishing
a powerful analogy with classical mechanics, a novel method, Stochastic Hamilto-
nian Descent, is developed to exploit device asymmetry as a useful feature. Overall,
devices and algorithms developed in this thesis have immediate applications in ana-
log deep learning, whereas the overarching methodology provides further insight for
future advancements.

Thesis Supervisor: Jesús A. del Alamo
Title: Professor of Electrical Engineering and Computer Science
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Chapter 1

Introduction to Analog Deep

Learning

Deep learning has irreversibly changed and drastically improved how we process in-

formation. The core aspect driving this success is classifying and clustering represen-

tations of data at multiple levels of abstraction, allowing extraction of much richer

information compared to raw data that classical computing paradigms have used so

far [1]. However, the computational workloads to train state-of-the-art deep neural

networks (DNNs) demand enormous computation time and energy costs for data cen-

ters [2]. To put into perspective, the number of operations to train a state-of-the-art

DNN is already more than the number of atoms in one mole of substance, ∼ 1023 [3,4].

Since larger neural networks trained with bigger data sets generally provide better

performance, this trend is expected to accelerate in the future. As a result, the ne-

cessity to provide fast and energy-efficient solutions for deep learning has invoked a

massive collective research effort by industry and academia [5–7].

One way to cut the computational cost of deep learning is to use reduced-precision

arithmetic for the otherwise computationally intensive matrix operations. This ap-

proach has indeed been successful for acceleration of inference tasks (i.e. classifi-

cation of a new input using an already trained network). Highly optimized digital

application-specific integrated circuit (ASIC) implementations using 2-bit resolution

were able to provide significant benefits, without compromising classification accu-
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racy [8]. However, the same method does not work for training applications (which

are many orders of magnitude more computationally expensive than inference oper-

ations), as they were found to require at least hybrid 8-bit floating-point formats [9],

which still imposes considerable energy consumption and processing time for large

networks. Therefore, beyond-digital approaches that can efficiently handle training

workloads are actively sought for.

The concept of analog computing has been put forward as an alternative, based on

local information processing using physical device properties instead of conventional

Boolean arithmetic. It is important to disambiguate here that by analog computing

this thesis refers to deep neural network accelerators based on crossbar architectures

and not brain-inspired/biomimetic approaches concerning spiking devices/circuits.

An example crossbar array illustration is given in Fig1-1.
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Ibj = I1j + I2j + ... (Ohm's Law)

Backward Pass (z = WT.δ)
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Ibi = Ii1 + Ii2 + ... (Ohm's Law)

Figure 1-1: Schematic of a sample crossbar array: A 2 × 2 portion of the
array is shown consisting of 3-terminal devices. At the end of rows and columns, pe-
ripheral circuitry is placed including: integrators, analog-digital-converters (ADCs),
non-linear-function units (NLFs), digita-analog-converters (DACs), and pulse gener-
ation units. See Ref. [10] for details.

In his 1961 paper, Karl Steinbuch first described how one can use an array of

resistors with a conductance matrix 𝐺, to represent an arbitrary matrix, 𝑊 , for inner
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product operations [11]. The idea is relatively simple, if one represents an input vector

𝑥 with voltages 𝑉𝑖 ∝ 𝑥𝑖, then each element 𝑖, 𝑗 will pass a current 𝐺𝑖,𝑗.𝑉𝑖, based on

Ohm’s Law. Then, at each line, these currents will be added up based on Kirchhoff’s

current law, yielding an output current 𝐼𝑗 ∝ 𝑦𝑗 for 𝑦 = 𝑊.𝑥. Alternatively, if the

resistors in a crossbar array are nonlinear, one can encode the input information in

duration of the voltage pulse (instead of the amplitude), and integrate the current at

the end of lines (instead of measuring the current), such that 𝑄𝑗 ∝ 𝑦𝑗 (Fig.1-1). This

very basic approach is the first fully-parallel (i.e. constant-time independent of matrix

size) primitive operation of analog processors, enabling the implementation of forward

and backward pass cycles of backpropagation algorithm [12] for DNN training.

In addition to using physical properties instead of Boolean operations, the fact

that the physical conductance matrix is both where the weight values are stored and

where the multiply-accumulate (MAC) operations are executed means computations

over crossbars to be considered local (sometimes referred to as in-memory computing).

Therefore, one does not need to bring the weight values from memory to the arithmetic

logic unit at every operation. Having said that, it would be an overstatement to claim

analog processors do not suffer from the infamous von Neumann bottleneck, referring

to the throughput limitation due to the data transfer rate between memory and the

processor, given that one still needs to bring input matrix from the memory as well

writing back the output matrix.

Overall, Steinbuch’s approach only covers ≈ 2/3 of overall training computational

load, as the remaining third are outer products for updating the matrix to mini-

mize the error function of the problem. Ideally, this means a maximum acceleration

factor of 3× for training, but practically, due to the many overheads spent during

analog-digital conversions compensating for other nonidealities of resistors (e.g. long

integration times to reduce thermal noise), there may not be a sizeable benefit for

any decent-sized array. Similar arguments can be extended to inference operations,

as the reduced precision alternatives mentioned above end up being more feasible for

these implementations.

Following the arguments above, to benefit from using crossbar arrays, it was still
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mandatory to find a way to execute the remaining third of the training operations in

a fully parallel manner with analog architectures. Only after 60 years, a method that

can execute rank-one outer products, relying on pulse-coincidence and threshold-

based incremental changes in device conductance was devised [13, 14]. Using this

method, an entire crossbar array can be updated in parallel, without explicitly com-

puting the outer product (i.e. the result is not returned to the user, but applied to

the network) or having to read the value of any individual crosspoint element. As a

result, all basic primitives for DNN training using the Stochastic Gradient Descent

(SGD) algorithm can be performed in a fully-parallel fashion using analog crossbar

architectures.

However, the performance benefits attained by analog computing are conditional

on a set of highly strict properties: the device must be fast (∼ 𝑛𝑠), energy-efficient

(< pJ), nonvolatile, reversible, and it must show symmetric conductance modulation

with many (∼ 102−103) conductance states across a large dynamic range (>10×) [10,

15]. In particular, asymmetric conductance modulation characteristics (i.e. having

mismatch between positive and negative conductance adjustments) were found to

deteriorate classification accuracy by causing inaccurate gradient accumulation [10,

13,15,16]. Moreover, for devices to be technologically relevant, they need to comprise

CMOS-compatible materials, fabricated using a back-end-of-line (BEOL) -compatible

process, have small footprint (<0.04 µm2), and have a certain range of base resistance

(∼ 5 − 10 MΩ). These properties are equally critical as the former set as they are

required for monolithic Si-integration (e.g. for memory, array periphery and digital

nonlinear processing elements) of analog crossbar arrays. Unfortunately, achieving all

of these properties simultaneously has so far been elusive.

In addition to widespread efforts to engineer ideal resistive elements, many custom-

tailored algorithms have been proposed to remedy device and physical array nonide-

alities, in particular modulation asymmetry. The most critical issue with techniques

proposed so far has been the introduction of serial operations in an "observe-and-

compensate" type implementation [16–23]. Given that a key benefit of crossbar ar-

chitectures is to reduce the 𝒪(𝑁2) computational complexity of a rank-1 update to
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𝒪(1), a correction method that again requires accessing 𝑁2 elements beats the orig-

inal purpose. Moreover, these methods often do not employ implicit calculation of

the outer product described above, and instead divert those operations to a nearby

digital processor (𝒪(𝑁2)) [19–23]. These modifications undoubtedly resolve the de-

vice asymmetry related issues, but also forego the acceleration and energy efficiency

benefits that make analog computing interesting in the first place.

1.1 Thesis Goal and Outline

The main goal of this thesis is to engineer devices and algorithms that can fulfill a

decade-long-sought ideal: enabling analog computing as a next-generation compu-

tational paradigm. Unlike preceding efforts that have compartmentalized foci, the

research ethos of this study will be co-optimization of device physics, materials, and

algorithms, as the author believes how software should be executed and how unit

elements should behave are fundamentally inseparable. It will be shown that this

method opens up novel possibilities which are highly counterintuitive to conventional

ways of thinking, such as using a most familiar material to obtain extreme charac-

teristics and transforming a major predicament into a functional feature. Ultimately,

the combination of the devices and algorithms investigated here should outperform

the state-of-the-art and more importantly, provide a way of understanding that can

guide researchers in this field for further advancements long beyond.

This thesis consists of two major chapters:

Devices for Analog Computing

This chapter will first provide a brief review of programmable resistor technologies,

analyzing the advantages of ionic, in particular protonic, programmable resistors. The

absence of a CMOS-compatible all-solid-state electrolyte that conducts protons but

blocks electrons will be identified as the main technological bottleneck. Nanoporous

phosphosilicate glass (PSG) will be proposed as an excellent candidate and will be

used to first prototype microscale and then nanoscale devices with near-ideal charac-
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teristics. Channel material optimization, fabrication insights, and experimental char-

acterization details will be provided for protonic programmable resistors. Finally, an

extreme-field operation regime will be discovered, providing unprecedented charac-

teristics for room temperature ionics. Overall, the protonic devices developed in this

chapter will show better combined material, processing, and performance properties

than all previous nonvolatile memory technologies.

Algorithms for Analog Computing

Despite numerous observations of device modulation asymmetry causing training ac-

curacy degradation, reasons behind this effect have not been understood. This chapter

will first explain the root cause of the issue by strategically simplifying the problem.

Then, theoretical underpinnings of a novel fully-parallel training algorithm will be

explained, which is compatible with asymmetric crosspoint elements. A powerful

analogy with classical mechanics will be formed to demonstrate how device asymme-

try can be exploited as a useful feature for analog deep learning processors. The new

training algorithm described in this chapter will greatly relax the device symmetry

requirement. More importantly, it will be shown in simulation that the combined

performance of the protonic devices trained with this new algorithm will outperform

that of nonexistent "ideal" devices trained with standard algorithms.
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Chapter 2

Devices for Analog Deep Learning

Interest in engineering devices for analog deep learning applications (also referred to

as programmable resistors, non-volatile memory, memristors, crosspoint elements) has

skyrocketed in the last decade. [24–27]. As described in Chap.1, these devices need

to satisfy a long set of strict properties, such that a DNN can be trained fast, energy-

efficiently, and accurately (i.e. without degradation of classification performance)

with analog crossbar architectures.

2.1 Survey of Device Technologies for Analog Com-

puting

The most mature non-volatile memory technology is the phase-change memory (PCM),

based on reversible phase transitions in chalcogenide glasses (Fig.2-1A). The active

material inside these devices is highly resistive in its amorphous state, and can get

conductive through crystallization due to controlled Joule heating [28]. Their ma-

turity has enabled a few large-scale demonstrations for analog computing applica-

tions [14, 29, 30]. However, all PCM devices to date suffer from abrupt asymmetric

amorphization (i.e. when one attempts to reduce device conductance, instead of a

small decrement, the device conductance suddenly drops to the lowest state) [28], as

well as resistance drift (i.e. device conductance steadily increase over time long after
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the quench is completed.) [31]. Former feature poses as a significant issue for training

applications (See. Secs.3.1.1), whereas the latter is relevant for both training and

inference implementations.

A) Phase Change
Memory (PCM)

C) Magnetic Devices (MRAM)B) Filamentary Devices (ReRAM)

D) Ferroelectric Devices

Figure 2-1: Review of programmable resistor technologies: Operational
schematics for the modulation behavior of filamentary resistive random access mem-
ory (top left), ferroelectric tunnel junctions (bottom left), phase change memory
(middle), and magnetic-tunneling devices (right). Figure reconstructed from images
published in Ref. [24].

A leading competitor technology is the family of conductive filament based re-

sistive devices (often called as resistive random access memory, ReRAM or RRAM,

Fig.2-1B) which are based on the formation of a narrowly confined conducting path

made of metal atoms or oxygen vacancies inside an insulating matrix [32–35]. The

modulation dynamics of RRAMs are governed by redox reactions and ion migration,

driven by electric, chemical, or thermal gradients across the device stack. Unfortu-

nately, RRAMs also suffer from two major problems outstanding: low yield (high

device-to-device variability) [36] and high stochasticity of the ion movement (mod-

ulation variability) [37, 38]. In contrast, magnetic/ferromagnetic tunneling devices

(also referred to as magnetic random access memory, MRAM, Fig.2-1C) based on

spin-transfer-torque switching [39], spin-orbital-torque switching [40], and voltage

controlled magnetic anisotropy [41] have far superior reliability and reproducibility.

However, achieving more than binary states per device with MRAMs has proven to

be difficult, which severely limits their applicability to analog processors [42].

This very brief review undoubtedly falls short in covering all memory technologies,
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as various attempts have been made based on different physical mechanisms. To give

one particular example, the author of thesis previously went as far as to exploring

superconducting memories to be repurposed for analog computing applications [43,

44]. However, none of such efforts have shown enough promise to become widely

adopted by engineering or applied sciences communities.

One can argue that it is quite reasonable for devices that were originally designed

for information storage purposes (i.e. memory) not to perform well in information

processing applications. DNN training consists of many (∼ 1020 − 1025) small in-

cremental modifications. Therefore, devices need to be optimized for state transi-

tion (i.e. modulation/switching) properties rather than state preservation properties.

Two polar opposite technologies adopt this mentality: ferroelectrics (extreme speed

- strenuous control, Fig.2-1D) [45–47] and ionics (fine tunability - leaden motion,

Fig.2-2) [48–58]. Ferroelectric tunnel junction devices operate by controlling the

remnant polarization of the material through the application of an external electric

field [59]. On the other hand, ionic devices rely on tuning the conductance of a

transition metal oxide through controlling the number of ionic species inside. Both

fields have great potential as well as a long-way to become the leading technology for

analog computing applications. This thesis will focus onto the latter, in particular to

3-terminal electrochemical devices (Fig.2-2).

Electrochemical programmable resistors comprise 3 key functional layers: ion

reservoir, electrolyte, and active channel. Reservoir material stores many (practi-

cally infinite) ions within, ready to be released upon the application of an electrical

signal. Electrolyte layer, sandwiched between the reservoir and the active channel,

conducts ions bidirectionally under electric field while insulating any electronic cur-

rent. Finally, the active material in the channel layer has a variable conductivity

controlled by the number of ions within. To operate the device three metal electrodes

are placed: a gate (G) contact to the reservoir layer as well as source (S) and drain

(D) contacts at the two ends of the active channel layer1.

1It should be noted here that not all electrochemical programmable resistors have 3-terminals.
For example Refs. [53, 56, 57] all have 2-terminal configurations which use the same two electrodes
for controlling (i.e. insertion/extraction of ions) as well as reading the state.
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Figure 2-2: Key operational dynamics of a 3-terminal electrochemical pro-
grammable resistor: Increment operation refers to increasing the channel conduc-
tance, 𝐺𝐷𝑆 by a small amount. This function is obtained by inserting ions from
the reservoir layer into the channel material through application of a voltage pulse
to the gate (top left). Decrement operation is the opposite of increment operation,
and is achieved by a gate pulse with opposite polarity (bottom left). When the gate
terminal is left floating, since electrons cannot move either from outside or the inside
(electrolyte is an electronic insulator), ions cannot move either. As a result, channel
conductance can be read without moving ions in either direction, conserving the state.

Resultant device can then be used in three key modes (Fig.2-2). If a positive

voltage (or current) pulse is applied to the gate terminal (while 𝑉𝐷 = 𝑉𝑆 = 0), some

of the ions move from the reservoir to the channel, passing through the electrolyte2.

At the same time, electrons flow from the outer circuit (since electrolyte insulates

electrons), in order to preserve charge neutrality. The increased number of ions within

the channel material increases its conductivity (i.e. 𝐺𝐷𝑆 ↑, increment)3. Conversely,

when a negative voltage (or current) pulse is applied to the gate (𝑉𝐷 = 𝑉𝑆 = 0), the

ions that were previously inserted into the channel are extracted back. Electrons once

again follow the same direction to that of protons through the outside circuitry. As a

2Ion directions are written for cationic devices, for anionic versions all should be reversed.
3This statement is true for cationic devices with n-type active channel and anionic devices with

p-type active channel. For the other two combinations, increased ion concentration in the channel
should decrease the channel conductivity instead and vice versa.
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result, the conductivity of the channel can be reduced back (i.e. 𝐺𝐷𝑆 ↓, decrement).

Importantly, when no electrical signal is applied to the gate terminal (i.e. floating

gate, 𝐼𝐺 = 0), since electrons cannot then move from the outside (or from the inside

due to the electronically insulating electrolyte), ions cannot move within the device

stack either. This allows one to read the nonvolatile conductance state (𝐺𝐷𝑆) of the

device, by application of a small 𝑉𝐷𝑆 in a nondestructive manner4.

When one uses 𝐿𝑖+ as the working ion, then the structure shown in Fig.2-2 be-

comes analogous to a solid-state battery [60]. There have been numerous attempts

for lithium-based devices, utilizing the immense previous literature on lithium ion

conductors developed for energy storage applications [48–51]. However, given the

CMOS-incompatibility of Li-compounds, efforts were made to realize similar effects

with oxygen ions, 𝑂2−, instead. Importantly, these devices have bulk modulation,

which makes them more controllable and reliable compared to their filamentary

predecessors [52–55]. However, oxygen is a large and heavy particle to be moved

around, limiting the operation speed and energy efficiency. Following this logic, re-

searchers ultimately shifted their attention to the smallest and lightest of ions: protons

(𝐻+) [56–58].

Unfortunately, the lack of solid-state inorganic protonic materials (electrolytes

and reservoirs) critically limited the applicability and scalability of protonic devices.

For example, Ref. [56] opted to use a liquid electrolyte (water infiltrated calcium

aluminate with nanopores) while Ref. [57] relied on electrolysis of polymeric mate-

rials (poly(3,4-ethylenedioxythiophene) polystyrene sulfonate, PEDOT:PSS) to gen-

erate and shuttle protons. A major progress was made by Ref. [58], by utilizing Pd

as a metallic proton reservoir (PdHx), in combination with Nafion as an inorganic

solid-state protonic electrolyte (Fig.2-3A). These devices showed promising modula-

tion characteristics and energy efficiency unlike their electrolysis-based predecessors,

thanks to the efficient proton storage and transport properties of the PdHx layer.

Moreover, given that Nafion is a material with high room temperature proton con-

4This property is a major design advancement over 2-terminal electrochemical devices, since the
additional terminal allows decoupling of reading and programming paths, resulting with superior
nonvolatile controllability
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ductivity (≈0.09 S cm−1) [61], as well as high electronic resistivity, it also enabled

devices to have good retention properties (Fig.2-3B). Therefore, these devices were

identified as an excellent starting point, for which the scaling and Si-integration efforts

are presented in Sec.2.2.

200 nm

C) D)1 cm

A)

Protonation Deprotonation

B)

Figure 2-3: Nafion-based protonic programmable resistors: (A) Schematic of
Nafion-based protonic programmable resistor. (B) Demonstration of channel modu-
lation using current pulses of ±200 nA and 5 ms. (C) Photograph of the shadowmask
fabricated device on a 1×1 cm2. (D) Scanning electron microscopy image of a failed
nanofabrication attempt using Nafion. Due to the lack of mechanical integrity of the
polymeric electrolyte, the gate structure collapsed under its own weight, squeezing the
electrolyte out of the gate area. Subfigures (A) and (B) are modified from Ref. [58].

2.2 Scaling Attempt for Nafion-Based Protonic Pro-

grammable Resistors

Devices presented in Ref. [58] were fabricated using a series of shadowmasks. The

resultant devices had an active area of 0.6×1.2 mm2, with a single device each fab-

ricated on a 1×1 cm2 chip. In an attempt to scale the device dimensions down, an
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electron-beam lithography based approach was developed. This process involved the

following steps: (1) placement of Au contacts (evaporation + liftoff), (2) blanket de-

position of the WO3 active layer (reasons behind this material choice is explained in

detail in Sec.2.4), (3) spin-coating of Nafion, (4) placement of a Cr/Al hard mask

layer (evaporation + liftoff), (5) reactive-ion etching of Nafion and WO3 layers using

Cr/Al as a hard-mask, (6) removal of the hard mask layer with Al-liftoff, (7) place-

ment of the Pd reservoir layer (evaporation + liftoff), and (8) placement of the Au

contacts/pads (evaporation + liftoff).

Fig.2-3D shows a scanning electron microscopy (SEM) image of the failed fab-

rication following the Step 5 above. The key reason for the failure was found to be

the lack of Nafion’s sufficient mechanial integrity to be able to carry the load of the

metal layer above (in the case of Fig.2-3D, the hardmask). Furthermore, during

the process optimization, it was observed that the polymeric electrolyte material was

incompatible with most solvents (e.g. isopropanol, acetone, and deionized water), as

well as elevated temperatures that are commonly used in conventional lithography

steps (e.g. 180 ∘C resist baking). Although further efforts were made which are not

mentioned here (e.g. coplanar devices with a gap in between, which could be filled

with the electrolyte as a final step), fabricating micro-/nanoscale devices with this

electrolyte material was found to be infeasible.

Furthermore, it should be noted here that the proton conductivity of Nafion

strongly relies on water absorption. Therefore, the device operation not only becomes

dependent on the relative humidity of the environment, it also requires frequent hy-

dration of the electrolyte during operation [62]. As a result, this study concluded the

necessity to find a more suitable solid state protonic electrolyte for creation of more

technologically-relevant protonic programmable resistors.
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2.3 Phophosilicate Glass (PSG) as CMOS-Compatible

Solid-State Protonic Electrolyte

In the search for an inorganic CMOS-compatible electrolyte layer, the author fo-

cused on silicate glasses (SiO2), which are arguably the most well-known oxides in

Si-technology, widely used as electron insulators [63] 5. Interestingly, proton (and

other alkali ion) movement inside SiO2 are conventionally perceived as a problem, as

having mobile species within the gate oxide can lead to an unstable threshold voltage

for MOSFETs made with such materials [64–66]. Therefore, a survey was conducted

for how industry minimizes such unwanted mobility in their case, with an aim of

applying the exact opposite for the purposes of this thesis.

Deposition conditions of silicate glasses can be engineered to yield a nanoporous

structure with defect-OH terminated Si groups (silanol), providing a surface-site path

for ion transport along the pores [67,68]. The acidic nature of silanol acts as a proton

donor, which can then migrate by hopping between hydroxyl groups and structural

water [69–72].Doping silicate glasses with phosphorous sterically hinders (i.e. pre-

vents formation of, via spatial blocking) the glass network to increase non-bridging

oxygen bonds [73], replace Si-O-Si bonds with -Si-OH and -Si-O-P-OH groups, and

increases both the pore volume and surface area [74]. The P-OH groups not only

have higher acidity compared to silanol but are also amphoteric, meaning that they

can act as both proton donors and acceptors [75]. These are all key properties that

provide phosphosilicate glass (PSG, P-SiO2) high proton conductivity at room tem-

perature (2.54× 10−4 S cm−1). This stands among the highest values when compared

with several perovskites, fluorites and simple oxides proton conducting materials [76],

while retaining their electron-insulating properties [77]. Furthermore, even though

the proton conductivity of PSG can be further increased up to 1 × 10−1 S cm−1 by

additional hydrothermal treatment [78] and chemisorption of water in the pore struc-

ture [74], such modifications also result in increased electronic conductivity of the

5The author notes that a key inspiration for this discovery was a desiccant silica-gel packet came
with arts supplies. Author initially assumed the water absorption properties of SiO2 could be a good
starting point and started searching the literature.
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material, which is undesirable for our design that requires non-volatile throttling of

hydrogen in WO3.

Following the existing literature on the material, the deposition conditions of the

PSG layer were then optimized to achieve: (a) low-density and nanoporous material

and (b) 0.6% phosphorous dopant concentration (empirically found to be by Ref. [77]).

The former increases the surface area of the material for proton conduction and

can be achieved by lowering the deposition temperature, whereas the latter can be

controlled via tuning the SiH4:PH3 ratio in the deposition system. Following this

logic, the optimal PSG electrolyte was deposited using plasma-enhanced chemical

vapor deposition (PECVD) processes at T = 100 ∘C with an RF plasma power of

60 W and a gas flow ratio of 12 sccm SiH4 :12 sccm PH3 diluted at 2% in H2),

yielding a deposition rate of ≈0.5 nm s−1.

A) B)

Figure 2-4: Optimization of phosphosilicate glass (PSG) electrolyte [79]:
(A) Atomic force microscopy image of the PSG 12:12 thin film surface deposited on
a Si surface. (B) X-ray photoelectron spectra of the P 2p and Si 2p peaks of the
SiO2, PSG 12:12, and PSG 12:24 thin films. Inset in (B) shows zoomed spectra in
the P 2p energy range [79].

An atomic force microscopy (AFM) image of a PSG film deposited under optimum

conditions on a Si substrate is shown in Fig.2-4A. A nanogranular structure (so-called

nanoglass) with a mean glassy grain diameter of ≈ 80 nm and an RMS roughness ≈

1 nm is observed. This image also evidences the presence of nanopores with a high

surface-to-volume ratio, an essential requirement for efficient proton transport in this
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material.

The stoichiometric ratio of each element in the optimized PSG film (PSG 12:12)

was found to be 0.55 at.% P, 45.65 at.% Si, and 53.8 at.% O using X-ray photoelectron

spectroscopy (XPS). The spectra of an undoped (SiO2), an optimized (PSG 12:12)

and a more highly-doped (PSG 12:24) film, deposited with 12:0, 12:12 and 12:24

SiH4:PH3 flux, respectively, were acquired (Fig.2-4B). While the intensity of the P

2p peak, located at a binding energy ≈ 134 eV (inset), increases with PH3 flux, that

of the Si 2p peak decreases. The estimated P concentration of the PSG 12:12 film

is 0.55%, a value similar to the one reported for PSG films with optimized proton

conductivity (2.54× 10−4 S cm−1) [77]. 6

2.4 Fabrication of Microscale PSG-Based Protonic

Programmable Resistors

Following the optimization process described in Sec.2.3, microscale 3-terminal pro-

tonic programmable resistors were made that employs a WO3 channel, a PSG elec-

trolyte layer, and a Pd gate reservoir. The basic operation principle of the device

relies on modulating the channel conductance via the electrochemically controlled in-

tercalation of protons into WO3, as explained in Ref. [58]. Initially, protons are stored

in the gate reservoir as Pdx, which is achieved by the hydrogen uptake of Pd in a

forming gas ambient (3% H2 in N2) [80]. Depending on the polarity of a voltage pulse,

a controlled number of protons are shuttled between the gate and the channel through

the solid electrolyte (Fig.2-2). Protons are n-type dopants in WO3 [81] and as they

move in and out, the conductivity of the channel is incremented and decremented.

Among several oxides whose electronic conductivity can be tuned via cation in-

tercalation (WO3 [58], V2O5 [82], MoO3 [83], Nb2O5 [84]), amorphous tungsten oxide

(a-WO3) was chosen here as the channel material. This selection was motivated

by the well-established conductivity modulation [48,52,58] and electrochromism [56]

6The author wants to thank Nicolas Émond for his immense help with the metrology and con-
tributions regarding PSG optimization.
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dynamics with cation intercalation. a-WO3 is a CMOS-compatible semiconductor

with a bandgap of 2.8∼3.2 eV whose conductivity can be precisely modulated by

protonation, taking place concurrently with charge-balancing electron filling of the

W 5d-orbital dominated conduction band in the dilute regime. The structure of

a-WO3 at room temperature is assumed to be similar to that of its crystalline coun-

terpart (monoclinic based on corner-sharing WO6 octahedra), but with disordered

bond lengths and angles. The most common defect present in the WO3 lattice struc-

ture is the oxygen vacancy, which bonds to a W6+ ion, reduces the oxidation state of

the neighboring W5+ ion, and increases the conductivity, in an analogous way as the

electron does with proton intercalation. The extent of conductivity modulation in

a-WO3 by proton intercalation, therefore, depends on its initial defect concentration

which also determines its initial conductivity [85].
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Figure 2-5: Fabrication of PSG-based microscale protonic programmable
resistors [79]: (A) Photolithography-based fabrication flow of the microscale de-
vices. (B) Cross-sectional scanning electron microscope image of the PSG overhang
(i.e. WO3 undercut) region. (C) Top-view scanning electron microscope image of a
finished device showing the source (S), drain (D), and gate (G) of a device with a
nominal channel width (W) of 5 µm and a length (L) of 25 µm.
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Microscale protonic programmable resistors were fabricated on a Si substrate cov-

ered with 10/90 nm HfO2/Al2O3 deposited by atomic layer deposition (ALD) for

electrical and protonic insulation (Fig.2-5A). Channel contacts (15/5 nm Au/Cr)

were first patterned using a direct-write photolithography and liftoff process. 10 nm

WO3 channel and 10 nm PSG electrolyte layers were blanket deposited using atomic

layer deposition (ALD) and plasma-enhanced chemical vapor deposition (PECVD)

processes, respectively. The deposition conditions for the PSG film were as discussed

in Sec2.3. The PSG/WO3 stack was subsequently patterned with a self-aligned reac-

tive ion etching (RIE) process in CF4 plasma, followed by TMAH-based wet etching

of WO3 to create a PSG-overhang that prevents shorting of the channel with the gate

at the edges of the device. The resultant overhang can be seen in the crossectional

SEM image shown in Fig.2-5B. Different channel dimensions (i.e. width and length)

were patterned in the range between 2−100µm. Finally, the 5 nm Pd reservoir and

150/10 nm Au/Cr gate interconnect and pads were electron-beam evaporated and

patterned through separate liftoff processes. Fig.2-5C shows the top-view scanning

electron microscope image of a fabricated structure, whereas the inset in Fig.2-6A

shows the photograph of the resultant chip.

2.5 Experimental Characterization Setup

Electrical characterization of the devices was conducted at room temperature in an

enclosed probe station (NEXTRON MPS-PT, Fig.2-6A). Before starting the exper-

iments with a given device, the reservoir layer was protonated (i.e. Pd→PdHx) using

forming gas (FG, 3% H2 in N2). This process was conducted as follows: (1) con-

tacting probes to the 𝐺,𝐷, 𝑆 terminals of the device under test, (2) pumping down

the chamber to −70 kPa vacuum, (3) injecting the chamber with FG for ≈60 s, (4)

keeping the chamber under positive pressure at ≈60 kPa (filled with FG) for another

≈60 s, and finally pumping down the chamber to −70 kPa vacuum. Note that, leaving

the devices under vacuum or forming gas during testing were found to be equivalent,

whereas exposure to air resulted in no-operation as the hydrogen within the reservoir
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was oxidized by the ambient O2.
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Figure 2-6: Experimental characterization setup for protonic programmable
resistors: (A) Photograph of the vacuum probe station NEXTRON MPS-PT and
a device positioned in the chamber (inset). (B) Connection schemes between the
device and the instruments under reading and pulsing modes.

Two of the probes (source and drain) were connected to the Source Measurement

Units (SMUs) of a Keysight B1500 Semiconductor Analyzer, while the third probe

(gate) was connected to the Pulse Generation Unit (PGU) of the same instrument.

The experiment sequence and data acquisition were controlled via an in-house de-

veloped MATLAB suite. As explained in Fig.2-2, the instrument was programmed

to function in two key operation modes: pulse (i.e. modulate), and read. During

pulsing, the SPGU is digitally connected to the gate terminal, whereas the channel

contacts are shorted to GND via their respective SMUs. Under this configuration, the

pulses were then applied by the SPGU, for which the polarity, duration, amplitude,

and repetition number are all defined by the aforementioned MATLAB script. On the

other hand, during the readout, the gate terminal was digitally floated (i.e. 𝐼𝐺 = 0),

and the source current, 𝐼𝑆 was integrated for ≈1 sec under 𝑉𝐷𝑆 =0.1 V condition. The

circuit schematics for these modes are shown in Fig.2-6B.

2.6 Characterization of Microscale PSG-Based Pro-

tonic Programmable Resistors

The sheet resistance of the ALD WO3 was ≈18.2 kΩ/2 as deposited, which then

slightly decreased to ≈13.5 kΩ/2 during the fabrication process. Fig.2-7A demon-
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strates clean device conductance modulation characteristics with reasonable symme-

try. Moreover, these states are nonvolatile (Fig.2-7B), due to the electron-blocking

properties of the PSG thin-film electrolyte (Fig.2-7C). Devices show good cycling

endurance characteristics, with very little variation in conductance values even after

the application of 50,000 pulses over the course of ≈ 30 h (Fig.2-7D). Furthermore,

no noticeable open circuit voltage development across the gate stack was observed,

allowing the operation under constant voltage pulses.

Note that similar devices were also fabricated using different PSG flavors using

different doping concentrations (12:0-undoped, and 12:24-twice-doped, conditions de-

scribed in Sec.2.3), deposition temperatures (200 ∘C and 300 ∘C), and different thick-

nesses (20 nm). As predicted by the process carried out in Sec.2.3, the optimized

PSG layer indeed had a considerably superior performance to the other alternatives.
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Figure 2-7: Experimental characterization of microscale protonic pro-
grammable resistors [79]: (A) Modulation characteristics of protonic pro-
grammable resistor (5 µm width, 50 µm length) performed by applying 50 voltage
pulses of ± 3 V and 1 s width in either direction. Each state is monitored for
2 s by measuring the channel current while applying VDS=0.1 V. (B) Retention
characteristics of the protonic device incrementally programmed by a voltage pulse
(𝑉𝑝𝑢𝑙𝑠𝑒 =−4 V, 𝑡𝑝𝑢𝑙𝑠𝑒 =1 s) at 30 and 60 minutes. Each conductance state is read
every minute by sweeping 𝑉𝑆𝐷 between ±0.1 V while the gate terminal is floating.
(C) Gate I-V characteristics of a large device (𝑊 =20 µm, 𝐿 =50 µm), evidencing
good electronic insulation properties of the PSG electrolyte. (D) Endurance charac-
terization throughout the application of 50,000 voltage pulses (25× [1000 ↑ 1000 ↓])
of ± 3 V and 0.1 s width over the course of ≈ 30 h.

Devices shown in Fig.2-5 and characterized in Fig.2-7 are the first prototypes of

a back-end CMOS-compatible protonic programmable resistor. Conductance modula-
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tion, device scalability, and process control are ensured by the use of a thin nanoporous

PSG layer, a common and CMOS-compatible material, as the proton electrolyte layer.

This material choice has allowed downscaling to ∼5µm as well as room temperature

without the necessity of hydration. Therefore, it is clear that PSG can serve as

a platform to explore alternative channel and hydrogen reservoir layers in protonic

programmable resistors.

Indeed, an alternative channel material, V2O5 was tested using a PSG-based stack.

Previously, an attempt of using V2O5 was also made with Nafion as the electrolyte, but

ended up failing as the acidity of the Nafion damaged the active channel layer. Such an

issue is not present with the PSG, allowing fabrication of operational devices as can be

seen in Fig.2-8. Given the p-type nature of V2O5 in contrast to the n-type WO3, the

protonation of the channel material decreases the conductance (instead of increasing

it). In the future, this property could potentially be utilized in complementary design

elements, featuring both types of devices.
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Figure 2-8: Modulation behavior of V2O5-PSG-based protonic pro-
grammable resistors: Channel conductance is continuously read with 𝑉𝐷𝑆 =0.1 V
where 8 positive +1 V and 8 negative −1 V gate pulses are applied. Protonation of the
channel reduces the conductance in a nonvolatile fashion, showing opposite direction
to that of WO3-based devices.

Despite the advancements described in this chapter so far, the overall device prop-

erties shown above (for both V2O5 and WO3) are still highly suboptimal. Most im-
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portantly, the operation speed, 1 s), needs to be accelerated by ∼8 orders of magni-

tude and the conductance modulation depth, 1.3×, needs to be increased to > 10×.

It will be shown in Sec.2.7 that the poor performance is due to the active layer

and not the PSG electrolyte. Moreover, microscale devices are still very large and

need to be scaled down > 100×. This last issue is arguably the easiest to resolve

(by employing a similar fabrication flow using electron-beam lithography), given the

CMOS-compatible nature of the materials used.

2.7 Optimization of theWO3 Layer for Protonic Pro-

grammable Resistors

An important observation for the devices made with amorphous ALD WO3 is the

high base (i.e. unprotonated) conductance of the channel material. It was later real-

ized that previous literature has also reported that such substoichiometric materials

showed poor electronic and optical modulation characteristics upon ion intercala-

tion [58, 85]. To further confirm the oxygen-deficient nature of the ALD-deposited

WO3, an XPS spectrogram is presented in Fig.2-9A (top). The W 4𝑓5/2 and W

4𝑓7/2 peaks deconvolution between the W6+ and W5+ oxidation states evidences a

strong W5+ contribution (≈ 1 W5+: 4 W6+ ratio), indicative of the initial reduced

(substoichiometric, WO3-x) nature and in-gap states present of the film.

To mitigate this issue, the deposition method of WO3 was optimized, with trials

including various conditions of ALD, electron-beam evaporation, and sputtering. The

material with superior modulation characteristics was found to result from reactive

sputtering of WO3 at room temperature, followed by a 400 ∘C annealing process that

both oxidizes and crystallizes the material. The deposition conditions for the sputter-

ing are as follows: W target, room temperature, 3 mTorr total pressure, 2.7/9.3 sccm

O2/Ar flux, 100 W RF power. Previous to the each deposition, target was also cleaned

in pure Ar atmosphere for about 5 minutes, followed by preconditioning of the cham-

ber for 20 minutes under the deposition conditions above. This process yielded a
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Figure 2-9: Optimization of the WO3 layer [86]: (A) X-ray photoelectron spec-
troscopy (XPS) of the ALD WO3 (top) and reactive sputtered + annealed WO3 (bot-
tom). Annealing step fully oxidizes WO3-x layer to fully-stoichiometric WO3 which is
has less base conductance and provides higher sensitivity for protonation. (B) X-ray
diffraction (XRD) spectra of the reactive sputtered WO3 after annealing step show-
ing characteristics of polycrystalline material in monoclinic phase. (C) Atomic force
microscopy (AFM) image of the reactive sputtered WO3 layer after the annealing step
showing surface topography deviations below ±1 nm (D) Basic modulation behavior
of a protonic device using the optimized WO3 channel material (all other materials
are identical to the ones discussed in Sec.2.4). Modulation is performed by applying
600, 1 ms, ±4 V voltage pulses in either direction. Each state is monitored for 5 ms,
by applying 𝑉𝐷𝑆 =0.1 V and measuring the channel current.

deposition rate ∼ 0.7−1Å s−1. Following the deposition (and patterning if neces-

sary), the layer was annealed at 400 ∘C for 1 h under 8:2 N2:O2 atmosphere.

The XPS, XRD, and AFM results of the optimized WO3 layer are given in Fig.2-

9A (bottom), Fig.2-9B, and Fig.2-9C respectively. It can be seen that the resultant

material is fully-stoichiometric as well as polycrystalline in monoclinic phase. To val-
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idate the superior performance of the optimized WO3 layer, a full device was made

and characterized (analogous to the processes described in Secs.2.4 and 2.6). It is

clear that the optimized material with lower base conductance has much larger dy-

namic range (≈ 500×) and higher modulation speed (∼1 ms) than the earlier devices

with ALD-deposited WO3. Note that experimental results for devices made with

other WO3 flavors are not reported here as they were all inferior in performance or

did not work at all, such as electron-beam evaporated, ALD-deposited with different

oxygen precursors (H2O and O3), reactive sputtered at different O2/Ar flux levels and

RF power; all combined with different annealing conditions such as different temper-

atures and environments or not annealing at all. Although no definitive trend or

dependency was detected, empirical results suggest that the optimized recipe above

yields the highest reproducibility as well as the best performance.7

2.8 Fabrication of Nanoscale PSG-Based Protonic

Programmable Resistors

Following the optimization of both PSG (Sec.2.3) and WO3 (Sec.2.7) layers, a

nanoscale device fabrication process based on electron beam lithography was engi-

neered .

The nanoscale protonic programmable resistors were fabricated on a Si substrate

covered with 10/90 nm HfO2/Al2O3 deposited by atomic layer deposition (ALD) for

electrical and protonic insulation (Fig.2-10 (left)). The 10 nm WO3 channel layer

was deposited with the optimized reactive sputtering process described in Sec.2.7,

patterned with liftoff followed by the annealing step. Channel contacts (35/5 nm

Au/Cr) were then patterned using an aligned liftoff process followed by blanket de-

position of 10 nm PSG electrolyte using the optimized plasma-enhanced chemical

vapor deposition (PECVD) process discussed in Sec.2.3. The 10 nm Pd reservoir

was followed by another liftoff process, and then used as a hardmask to etch PSG

7The author once again wants to thank Nicolas Émond for his immense help with the metrology
and contributions regarding WO3 optimization.
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Figure 2-10: Fabrication of PSG-based microscale protonic programmable
resistors [86]: (A) Photolithography-based fabrication flow of the nanoscale devices.
(B)Transmission electron microscope image of the device crossection, focusing on the
critical step of the fabrication flow (right). (C) Scanning electron microscopy (SEM)
images of protonic devices with higher aspect ratios.

through reactive ion etching (RIE) using CF4 plasma. Finally, the 150/10 nm Au/Cr

gate pads were electron-beam evaporated and patterned through a photolithography-

based liftoff process. Different channel dimensions (i.e. width and length) were pat-

terned in the range between 20−1000 nm. Elemental analysis of the devices is shown

in Fig.2-12, validating the accurate thicknesses and the placement of the respective

layers.
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Figure 2-11: Nanosecond protonic programmable resistors [86]: (A) 3-D il-
lustration of the protonic programmable resistors studied in this work showing Au
(yellow), WO3 (green), PSG (magenta), and Pd (grey) layers. As a result of an
engineered sidewall, the Pd layer that overlaps with the channel electrodes is iso-
lated from the remainder of the gate electrode. (B) False-colored top-view scanning
electron microscope (SEM) image of a fabricated device with a 60×30 nm channel.
(C) Transmission electron microscope (TEM) cross-section image of a protonic pro-
grammable resistor that had previously been extensively modulated.

The most critical feature of this process is the self-aligned gate structure employed

to scale down device dimensions, avoiding mask alignment limitations. In this layout,

the Pd layer is overlaid across a large region, whereas the height of the channel

electrodes was calibrated such that the PSG layer can cover the sidewalls, while the

Pd layer that overlaps with the channel electrodes is disconnected from the rest of the

gate electrode (Fig.2-10B, and Fig.2-11C). As a result, this structure avoids field

lines that do not pass through the channel material. This is intended to maximize

energy efficiency. The top view SEM image and the crossectional TEM image of the

finalized devices are shown in Fig.2-11.

Regarding the yield rate of this process, a total of 4056 devices were fabricated on

6 separate 1×1 cm2 chips with 4 different PSG and 2 different WO3 thicknesses. Out

of the 246 devices measured, 17 were shorted (the most aggressively scaled devices),

114 were too resistive to operate and 115 functioned successfully giving a functional
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yield of 50%. Note that the yield is significantly higher, 75%, for the 55 devices with

thicker WO3 layer. Over 9 months of experimentation, only minor degradation effects

were observed, where the base conductance of devices increased. This change can be

attributed to self-protonation of the inactive devices due to proton leakage across PSG

(as all Pd layers are protonated together in the gas environment, even for untested

devices). Encapsulation of these devices should ultimately mitigate this issue (which

would also require a new protonation method such as ion implantation into Pd, post-

encapsulation). On the other hand, devices showed no appreciable change when they

were stored in N2 box.

Figure 2-12: Elemental analysis of nanoscale protonic programmable re-
sistors [86]: Energy Dispersive Spectroscopy (EDS) mapping in the transmission
electron microscope (TEM) of the elements. The presence of Pt is due to its use as
the protective layer during the focused-ion-beam milling step for the preparation of
the lamella.9

2.9 Characterization of Nanoscale PSG-Based Pro-

tonic Programmable Resistors

Fig.2-13A shows the channel conductance modulation of a 50 nm×150 nm device

with 10 nm thick PSG for 1000 protonating voltage pulses (𝑉 + =10 V) followed by

37



0 500 1000 1500 2000
Pulse Number

0

0.05

0.1

0.15

0.2

0.25

4.28 MΩ

87.6 MΩ

20.5x   

W/L = 50/150nm

1000  + 1000  Pulses  
tpulse = 5ns

V+ = 10V, V− = −8.5V
VSD,read

 = 0.1VC
h

an
n

e
l C

o
n

d
u

ct
an

ce
 (
μ

S
)

Fast, Linear,

Modulation
Symmetric

A)

Read Number

W/L = 50/150nm

100 reads/state
≈ 1s/read

100 pulses between states

Nonvolatile
Modulation

B)

C)

 C
o

n
d

u
ct

an
ce

 (
μ

S
)

C
h

an
n

e
l

0
0.05

0.1
0.15

0.2
0.25

Pulse Number (x104)
2 4 6 8 10

 C
o

n
d

u
ct

an
ce

 (
μ

S
)

C
h

an
n

e
l

0.2

0.15

0.1

0.05

0
0 500 1000 1500 2000

Figure 2-13: Ultrafast and energy-efficient modulation characteristics of
nanoscale protonic programmable resistors [86]: (A)Modulation performance
of a 50 nm×150 nm protonic device with 10 nm PSG showing fast (5 ns/pulse), nearly
linear, and symmetric characteristics. (B) Retention behavior of the protonic device
for ∼100 s at different conductance levels over the full dynamic range. (C) Endurance
characterization of the protonic device displaying non-degrading modulation over 105

pulses conducted over 30 h.

1000 deprotonating ones (𝑉 − =−8.5 V). Between successive pulses, the channel con-

ductance was read under VDS=0.1 V and IG= 0 conditions and averaged for ∼1 s. The

devices display nearly ideal characteristics in terms of: (1) high modulation speed,

responding to 5 ns voltage pulses10, (2) fairly linear and symmetric behavior for in-

cremental and decremental changes, (3) conductance retention characteristics over

durations longer than ∼ 1010 times the unit pulse time (Fig.2-13B), (4) dynamic

conductance range of 20×, (5) optimal base resistance of 88 MΩ for readout [13], and

(6) preservation of these ideal properties without any degradation over extended time

and use (Fig.2-13C). Moreover, the devices show excellent energy efficiency under

this ultrafast operation, the gate current supplied during each pulse being too small

to be precisely measured for the small devices. The energy consumption during the

transients is estimated to be ∼2.5 fJ/pulse, which is a technology-agnostic overhead

related to charging and discharging the gate capacitance. On the other hand, the

energy consumed in proton transfer while the 5 ns voltage pulse is at its peak value

10Pulse times are defined at the 90% of the maximum amplitude. Rise and fall times of all pulses
(i.e. 0-80%) are 11.25 ns
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is estimated to be ∼15 aJ/pulse for the device shown in Fig.2-13. This latter value

is associated with the efficient shuttling of ions within the gate stack under the high

electric field. To the best of author’s knowledge, no analog non-volatile memory

technology has shown such ideally combined material, processing, and performance

properties as the all-solid-state protonic devices produced here.
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Figure 2-14: Energy estimation of nanoscale protonic devices [86]: 𝐼𝐺 − 𝑉𝐺

curve for a large (1000 nm×750 nm) protonic device used to estimate the gate current
of the smaller device from the same chip shown in Fig.2-13. At 10 V, average recorded
gate current is 30.5 nA (marked with red lines).

The energy estimations above were calculated as following. The dynamic en-

ergy related to charging and discharging the capacitances are computed over 𝐸 =

𝐶𝑔𝑎𝑡𝑒𝑉
2
𝑔𝑎𝑡𝑒, where the 𝐶𝑔𝑎𝑡𝑒 = (𝜖𝐴𝑔𝑎𝑡𝑒)/𝑑𝑃𝑆𝐺 and 𝐴𝑔𝑎𝑡𝑒 = 150×50 nm2, 𝑑𝑃𝑆𝐺 =10 nm,

and 𝜖𝑃𝑆𝐺 ≈ 4𝜖0. On the other hand, the energy related to the proton shuttling is

computed as 𝐸 = 𝑡𝑝𝑢𝑙𝑠𝑒 × 𝐼𝑎𝑣𝑔 × 𝑉𝑝𝑢𝑙𝑠𝑒 where the 𝑡𝑝𝑢𝑙𝑠𝑒 is the duration at which the

voltage is > 0.8 × 𝑉𝑝𝑢𝑙𝑠𝑒. To estimate the gate current and dynamic pulse energy, a

larger device from the same chip (i.e. same PSG thickness) with 𝑊 =1000 nm and

𝐿 =750 nm was measured. At the same gate voltage of 10 V used in Fig.2-13A, an

average gate current of 30.5 nA was recorded. Assuming area scaling, an estimate

gate current of 300 pA should be passing through the device in Fig.2-13.
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2.10 Extreme Electric Field Operation Regime for

Protonic Programmable Resistors

In order to explain these excellent modulation characteristics, a model for device op-

eration was developed comprising two key parts: (a) proton transport in the PSG

and (b) proton-coupled electron transfer reaction rates at the PSG/electrode inter-

faces. Both processes have qualitatively similar formalisms and dependencies where

the former is governed by hopping conduction in a disordered solid with random

site energies [87–89], whereas the latter is determined by the Butler-Volmer charge

transfer equation. Conventionally, the high activation energies for protons to be freed

from their sites (e.g. Si-O-H or P-O-H) result in low ionic conductivity [90, 91], and

ultimately limit the operation speed at room temperature. For amorphous SiO2 this

activation energy was reported to be 0.38 meV which is much larger than the thermal

energy in ambient conditions (25.9 meV) [92].

In the presence of a high electric field, this energy barrier to ion conduction is

lowered in the field direction, yielding an enhanced proton hopping current:

𝐼𝐺(𝑉𝑝𝑢𝑙𝑠𝑒) ∝ 𝑠𝑖𝑛ℎ(
𝑞.𝑎.𝑉𝑝𝑢𝑙𝑠𝑒

2𝑘𝑇.𝑑𝑃𝑆𝐺

) (2.1)

where 𝑞 is the electron charge, 𝑘 the Boltzmann constant, 𝑇 the temperature, 𝑎 the

apparent hopping distance, and 𝑑𝑃𝑆𝐺 the thickness of the electrolyte [89, 93]. Note

that due to the high resistance of the PSG layer, all of the pulse voltage is assumed to

drop across the electrolyte (i.e. VPSG≈Vpulse). Fig.2-15A shows the experimentally

observed conductance change per pulse (∆Gchannel) as a function of pulse amplitude

(Vpulse) and pulse time (tpulse) for a device with 𝑑𝑃𝑆𝐺 =5 nm. Over a similar range

of electric fields as the data in Fig. 2-13, the results of Fig.2-15 closely follow

Eq.2.1 as indicated by the lines. Furthermore, experiments for devices with different

𝑑𝑃𝑆𝐺 allow us to extract a hopping distance for the PSG of 5.6Å (Fig.2-15B). This

result is in good agreement with previously reported values for amorphous silica

glasses [92, 94,95].
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Figure 2-15: Voltage dependence of conductance modulation [86]: (A) Chan-
nel conductance change per pulse (∆Gchannel) for different pulse amplitude (Vpulse) and
duration (tpulse) pairs for a device with 5 nm PSG thickness. Points represent averaged
experimental data over 1000 identical pulses for a given Vpulse-tpulse pair whereas the
meshed surface represents the fitted result. The 𝑎 and 𝛽 values used to fit the data
are 5.6Å and 1.2, respectively. (B) Estimation of the apparent hopping distance,
a, from repeating the same experiment in Fig.2-13A for 25 devices selected over 4
different chips with different PSG thicknesses.

For the devices presented here, the electric field (≈10 MV cm−1 across the hopping

distance (∆𝑈 = 𝑞𝐸𝑎 ≈ 0.3 − 0.5 eV) is so high that it may completely remove the

activation barrier within the PSG (≈0.4 eV). This effect resolves the bottleneck of low

proton conduction at room temperature, thus enabling high-speed operation. Indeed,

such effect was predicted in simulations earlier [96], but has not been previously

observed experimentally, as the required conditions are beyond the breakdown field or

the electrochemical stability window of traditional electrolyte materials [97]. Instead,

PSG allows a high critical field (8−15 MV cm−1) [98,99] in addition to a decent base

proton conductivity [74, 77, 100, 101], making it an ideal electrolyte choice for this

application. It should also be noted that the nonlinear 𝐼𝐺 − 𝑉𝐺 characteristics in

the gate stack are highly functional for device control. For example, for the half-

select programming scheme required for parallel updating, it is necessary that the

modulation magnitude at 𝑉/2 is significantly less than that at 𝑉 [13, 102], which is

certainly satisfied by the exponential dependence shown in Fig.2-15A. Furthermore,

the pulse time dependence of the protonation/deprotonation dynamics are empirically

approximated as a power law (∝ 𝑡1.2𝑝𝑢𝑙𝑠𝑒). The reasons behind this functional form
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should be investigated in a future study by decoupling the many coupled electronic-

ionic dynamics inside the bulk materials and interfaces. Note that in Eq.2.1, 𝑉𝑝𝑢𝑙𝑠𝑒

was used equivalent to the voltage across the PSG electrolyte (i.e. 𝑉𝑃𝑆𝐺 ≈ 𝑉𝑝𝑢𝑙𝑠𝑒).

This estimation was justified by the results from devices with four different PSG

thicknesses in Fig.2-16, showing overlapping modulation curves for 𝑉𝑝𝑢𝑙𝑠𝑒/𝑑𝑃𝑆𝐺 .
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Figure 2-16: Programming voltage dependence of PSG thickness for
nanoscale protonic programmable resistance [86]: Scaling of voltage linearly
with PSG thickness, indicating that the PSG resistance is higher than the other re-
sistances in the gate stack.

The ability to rapidly shuttle protons within bulk PSG at extreme speeds shifts

the bottleneck to the interfaces. While the proton uptake rate of Pd is high [103] and

the PdHx/PSG interfacial reaction is likely also efficient, the same cannot be said

for proton insertion into polycrystalline WO3 [104] which shows up as PSG/WO3

interfacial charge-transfer resistance. As protons do not have high diffusivity in WO3

[105], it is likely that the inserted species cannot quickly vacate their sites near the

interface which further reduces the insertion rate in a self-limiting fashion. These

factors result in an excess of highly energetic protons at the WO3-PSG interface

and may lead to H2 gas formation and buildup at the interface [106]. The electrical

signature and morphological consequences of long-pulse-time stressing of the devices

are captured in Fig.2-17. In Fig.2-17A, the same device previously studied in
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Figure 2-17: Modulation dynamics for short and long pulse durations [86]:
(A) Channel conductance modulation of the device presented in Fig.2-13 for increas-
ing pulse duration under the same voltage. Between pulses, the channel conductance
is read and averaged for ≈1 s. (B) SEM image of the device after the experiment.
(C) SEM image of another device captured during early degradation. (D) Si-L2,3

EELS spectra of the PSG layer for tested (red, orange) and fresh (blue) devices.

Fig.2-13 is tested under the same Vpulse but for increasing tpulse. Above 40 ns a

cascading effect is apparent, where the conductivity change increases with each pulse,

ultimately causing device failure for 90 ns pulses. An SEM image of the device after

the experiment is shown in Fig.2-17B while Fig.2-17C shows an image of a device

stopped at earlier stages (corresponding to the 40 ns pulse regime shown in Fig.2-

17A). These and other images show damage features that are consistent with H2

evolution, nanobubble formation and stress buildup.

Most importantly, this degradation is absent under fast-pulse operation, since the
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PSG can capture free protons back once the electric field disappears. In addition to

the good endurance characteristics shown in Fig.2-13C, as further evidence of reliable

operation, electron energy loss spectroscopy (EELS) experiments were performed for

the solid electrolyte in fresh and tested devices. Fig.2-17D shows that the Si L2,3

energy loss spectra are similar in active and inactive regions across the PSG layer,

which indicates there is no stoichiometry change [107] or the change is too subtle to

be detected.

2.11 Conclusion

The two key contributions reported in this chapter are: (1) recognition of nanoporous

phosphosilicate glass (PSG) as a CMOS-compatible protonic electrolyte and (2) dis-

covery of the extreme-field operation for ultrafast modulation of nanoscale protonic

devices with outstanding energy efficiency. PSG is an excellent choice for protonic

programmable resistors due to its: (1) good electronic insulation, (2) high room tem-

perature proton conductivity, (3) conduction mechanism based on P-doping (instead

of structural water), and (4) ready availability in conventional Si-processing. The

selection of this material has allowed using standard CMOS-fabrication techniques to

scale down the device footprint. It was only later understood that PSG had another

key property: high critical field. This final feature unlocked an unprecedented regime

of nanosecond proton shuttling at room temperature without causing any material

degradation.

Ultimately, this chapter presented the first CMOS- and BEOL-compatible nanoscale

protonic programmable resistors with excellent characteristics that combine benefits

of nanoionics with extreme acceleration of ion transport and reactions under strong

electric fields. This operation regime enables controlled shuttling and intercalation of

protons in nanoseconds at room temperature in an energy-efficient manner with near-

ideal modulation characteristics. As a result, the technology invented, optimized, and

prototyped here has superior combined material, processing, and performance prop-

erties than the previous state-of-the-art non-volatile memories.

44



Chapter 3

Algorithms for Analog Deep Learning

Computational science covers a wide-range of approaches that lie in between theory

and experimentation, studying and predicting behavior where the former is insuffi-

cient and the latter is impractical. These methods have been integral at frontiers of

scientific discovery, including decoding the human genome, advancing drug discov-

ery, and unraveling cosmology. Given that large-scale applications as such require

analyzing of high volumes of data, processing information in an accurate, fast, and

energy-efficient manner is a key requirement for the continued progress of fundamental

and applied sciences.

For the last ∼80 years, the ability to tackle ever-larger problems has been enabled

by the codevelopment of more powerful computing machines and algorithms. Even

though in 1960s analog processors were once considered promising, almost all compu-

tation since have been carried out with digital architectures, based on Boolean-logic

implemented on CMOS-circuitry. The biggest reason behind this choice has been the

erroneous nature of analog architectures, based on intrinsically noisy elements with

high variability, in contrast to near-faultless operation of their digital counterparts.

However, if one can design more fault-tolerant algorithms, then the analog architec-

tures have unique properties to offer, which can provide unprecedented performance

benefits.

Deep learning is by far the most popular application with considerable fault-

tolerance, as training operations employ a feedback loop that can correct singular
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mistakes post-facto (i.e. instead of building up on it). Moreover, given that the

computational requirements for large-scale DNN training have been exponentially

increasing with a ∼3 month doubling time, there is a dire need to find alternative

ways to support the extraordinary success of artificial intelligence. Having said that,

neural network training is not the only application that can be accelerated via analog

processors. This chapter will explore strengths and weaknesses of analog comput-

ing, specifically analog deep learning, in order to assess potential application fields

and design specialized algorithms that operate efficiently and accurately on these

processors.

3.1 Analog Deep Learning Based on Stochastic Gra-

dient Descent

Neural networks can be construed as many layers of matrices (i.e. weights, 𝑊 )

performing affine transformations followed by nonlinear activation functions. Training

(i.e. learning) process refers to the adjustment of 𝑊 such that the network response

to a given input produces the target output for a labeled dataset. The discrepancy

between the network and target outputs is represented with a scalar error function, 𝐸,

which the training algorithm seeks to minimize. In the case of the conventional SGD

algorithm [108], values of 𝑊 are incrementally modified by taking small steps (scaled

by the learning rate, 𝜂) in the direction of the gradient of the error function sampled

for each input. Computation of the gradients is performed by the backpropagation

algorithm consisting of forward pass, backward pass, and update subroutines [12]

(Fig.3-1A). When the discrete nature of DNN training is analyzed in the continuum

limit, the time evolution of 𝑊 can be written as a Langevin equation:

�̇� = −𝜂
[︁ 𝜕𝐸
𝜕𝑊

+ 𝜖(𝑡)
]︁

(3.1)

where 𝜂 is the learning rate and 𝜖(𝑡) is a fluctuating term with zero-mean, accounting

for the inherent stochasticity of the training procedure [109]. As a result of this
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training process, 𝑊 converges to the vicinity of an optimum 𝑊0, at which 𝜕𝐸
𝜕𝑊

= 0

but �̇� is only on average 0 due to the presence of 𝜖(𝑡). For visualization, if the

training dataset is a cluster of points in space, 𝑊0 is the center of that cluster, where

each individual point still exerts a force (𝜖(𝑡)) that averages out to 0 over the whole

dataset.
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Figure 3-1: Implementation of the Stochastic Gradient Descent algorithm on
analog crossbar arrays [110]: Vectors 𝑥, 𝑦 represent the input and output vectors
in the forward pass whereas 𝛿, 𝑧 contain the backpropagated error information. The
analog architecture schematic is only shown for a single layer, where all vectors are
propagated between upper and lower network layers in general. The pseudocode only
describes operations computed in the analog domain, whereas digital computations
such as activation functions are not shown for simplicity.

In the case of analog crossbar-based architectures, the linear matrix operations

are performed on arrays of physical devices, whereas all nonlinear computations (e.g.

activation and error functions) are handled at peripheral circuitry (See Fig.1-1). The

strictly positive nature of device conductance requires representation of each weight by

means of the differential conductance of a pair of crosspoint elements (i.e.𝑊 ∝ 𝐺𝑚𝑎𝑖𝑛−

𝐺𝑟𝑒𝑓 ). Consequently, vector-matrix multiplications for the forward and backward

passes are computed by using both the main and the reference arrays (Fig.3-1A).

On the other hand, the gradient accumulation and updates are only performed on the

main array using bidirectional conductance changes while the values of the reference

array are kept constant Fig.3-1. In this section, to illustrate the basic dynamics of

DNN training with analog architectures, a single-parameter optimization problem is

studied (linear regression) which can be considered as the simplest "neural network".

The weight updates in analog implementations are carried out through modula-

tion of the conductance values of the crosspoint elements, which are often applied

47



by means of pulses. These pulses cause incremental changes in device conductance

(∆𝐺+,−). In an ideal device, these modulation increments are of equal magnitude in

both directions and independent of the device conductance, as shown in Fig.3-2A.

It should be noted that the series of modulations in the training process is inherently

non-monotonic as different input samples in the training set create gradients with

different magnitudes and signs in general. Furthermore, as stated above, even when

an optimum conductance, 𝐺0, is reached (𝑊0 ∝ 𝐺0 − 𝐺𝑟𝑒𝑓 ), continuing the training

operation would continue modifying the conductance in the vicinity of 𝐺0, as shown

in Fig.3-2B. Consequently, 𝐺0 can be considered as a dynamic equilibrium point of

the device conductance from the training algorithm point of view.
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Figure 3-2: Linear regression under SGD algorithm using symmetric cross-
point elements [110]: (A)Sketch of conductance modulation behavior of a sym-
metric crosspoint device. (B) Simulated single-parameter optimization result for the
symmetric device. Conductance successfully converges to the optimal value for the
problem at hand, 𝐺0.

3.1.1 Analysis of Asymmetry Caused Effects Under SGD

As covered in Chap.2, infamously, most analog resistive devices do not show the ideal

characteristics illustrated in Fig.3-2A. Instead, many technologies display asymmet-

ric conductance modulation characteristics such that unitary (i.e. single-pulse) mod-

ulations in opposite directions do not cancel each other in general, i.e., ∆𝐺+(𝐺) ̸=

∆𝐺−(𝐺). However, with the exception of some device technologies such as Phase

Change Memory (PCM) which reset abruptly [16, 18, 23], many crosspoint elements

can be modeled by a smooth, monotonic, nonlinear function that shows saturating
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behavior at its extrema as shown in Fig.3-3A [52, 58, 111]. For such devices, there

exists a unique conductance point, 𝐺𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑦, at which the magnitude of an incre-

mental conductance change is equal to that of a decremental one. As a result, the

time evolution of 𝐺 during training can be rewritten as:

�̇� = −𝜂
[︁𝜕𝐸
𝜕𝐺

+ 𝜖(𝑡)
]︁
− 𝜂𝜅

⃒⃒⃒𝜕𝐸
𝜕𝐺

+ 𝜖(𝑡)
⃒⃒⃒
.𝑓ℎ𝑎𝑟𝑑𝑤𝑎𝑟𝑒 (3.2)

where 𝜅 represents the magnitude and 𝑓ℎ𝑎𝑟𝑑𝑤𝑎𝑟𝑒 gives the functional form of the de-

vice asymmetry (See Sec.3.1.2). In this expression, the term −𝜂
⃒⃒⃒
𝜕𝐸
𝜕𝐺

+ 𝜖(𝑡)
⃒⃒⃒
signifies

that the direction of the change related to asymmetric behavior is solely determined

by 𝑓ℎ𝑎𝑟𝑑𝑤𝑎𝑟𝑒, irrespective of the direction of the intended modulation. For the ex-

ponentially saturating device model shown in Fig.3-3A, 𝑓ℎ𝑎𝑟𝑑𝑤𝑎𝑟𝑒 = 𝐺 − 𝐺𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑦,

which indicates that each and every update event has a component that drifts the

device conductance towards its symmetry point. A simple observation of this effect

is when enough equal number of incremental and decremental changes are applied to

these devices in a random order, the conductance value converges to the vicinity of

𝐺𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑦 [111]. Therefore, this point can be viewed as the physical equilibrium point

for the device, as it is the only conductance value that is dynamically stable.
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Figure 3-3: Linear regression under SGD algorithm using asymmetric cross-
point elements [110]: (A) Sketch of conductance modulation behavior of an asym-
metric crosspoint device. The point at which ∆𝐺+ = ∆𝐺− is defined as the symmetry
point of the device (𝐺𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑦). (B) Simulated training result for the same single-
parameter optimization with the asymmetric devices. Device conductance fails to
converge to 𝐺0, but instead settles at a level between 𝐺0 and 𝐺𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑦.

It is essential to realize that there is in general no relation between 𝐺𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑦 and
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𝐺0, as the former is entirely device-dependent while the latter is problem-dependent.

As a result, for an asymmetric device, two equilibria of hardware and software cre-

ate a competing system, such that the conductance value converges to a particular

conductance somewhere between 𝐺𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑦 and 𝐺0, for which the driving forces of

the training algorithm and device asymmetry are balanced out. (Fig.3-3B). In the

examples shown in Fig.3-2B and Fig.3-3B, 𝐺0 of the problem is purposefully de-

signed to be far away from 𝐺𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑦, so as to depict a case for which the effect of

asymmetry is pronounced. Indeed, it can be seen that the discrepancy between the

final converged value, 𝐺𝑓𝑖𝑛𝑎𝑙, and 𝐺0 strongly depends on the relative position of 𝐺0

with respect to the 𝐺𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑦 (Fig.3-4B), unlike that of ideal devices (Fig.3-1A).
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Figure 3-4: Problem-specific residual error dependence for asymmetric de-
vices trained under SGD algorithm [110]: (A) Simulated residual distance
between the final converged value, 𝐺𝑓𝑖𝑛𝑎𝑙, and 𝐺0 for training the device with sym-
metric characteristics shown in Fig.3-2A for datasets with different optimal values.
(B) The same experiment conducted for asymmetric devices shown in Fig.3-3A.

3.1.2 Mathematical Modeling of Device Asymmetry Under

SGD

Exponentially saturating conductance modulation (per pulse) of devices with the

characteristics shown in Fig.3-3A can be described with the following equations:

∆𝐺+(𝐺) = ∆𝐺+(𝐺𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑦)× (1− 𝜅(𝐺−𝐺𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑦)) (3.3)
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∆𝐺−(𝐺) = ∆𝐺−(𝐺𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑦)× (1 + 𝜅(𝐺−𝐺𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑦)) (3.4)

By definition, ∆𝐺+(𝐺𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑦) = ∆𝐺−(𝐺𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑦) and can be considered as the unit

of conductance change per single pulse (consistent with the notation for a symmetric

device, which is also sometimes referred as ∆𝐺𝑚𝑖𝑛 to indicate it is ultimately the

resolution of the update). As a result, two equations can be combined as:

∆𝐺𝑟𝑒𝑎𝑙(𝐺) = ∆𝐺𝑖𝑛𝑡𝑒𝑛𝑑𝑒𝑑 − 𝜅|∆𝐺𝑖𝑛𝑡𝑒𝑛𝑑𝑒𝑑| × (𝐺−𝐺𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑦) (3.5)

assuming intended updates are small in magnitude (i.e. ∆𝐺𝑖𝑛𝑡𝑒𝑛𝑑𝑒𝑑 ∼ ±∆𝐺𝑚𝑖𝑛).

To capture the evolution of conductance during a training operation, the discrete

updates applied on the device are investigated first. Assuming the initial point (not

to be confused with the optimal point) 𝐺0 = 𝐺𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑦, for a learning rate 𝜂:

𝐺1 = 𝐺0 + 𝜂∆𝐺1 (3.6)

𝐺2 = 𝐺1 + 𝜂∆𝐺2 − 𝜂𝜅|∆𝐺2|(𝐺1 −𝐺𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑦) (3.7)

𝐺𝑘 = 𝐺𝑘−1 + 𝜂∆𝐺𝑘 − 𝜂𝜅|∆𝐺𝑘|(𝐺𝑘−1 −𝐺𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑦) (3.8)

where the intended updates ∆𝐺𝑘 are rank-1 portions of the update matrix to be

applied on the weight matrix. Note that each ∆𝐺 is actually applied as a series of

incremental updates in the units of minimum conductance change of the devices. Due

to asymmetry, each successive update is affected by all preceding updates (and their

order). It is important to realize that all ∆𝐺𝑖 are computed such that they correspond

to the derivative of the error function with respect to 𝐺𝑖−1 (i.e.
∑︀

𝑘 ∆𝐺𝑘 ∝ −𝜂 𝜕𝐸
𝜕𝐺
).

Furthermore, these updates also involve a component 𝜖(𝑡), which accounts for the

inherent stochasticity of this process, sampling the true gradient. Rewriting Eq.3.8

to reflect these properties:

𝐺𝑘 = 𝐺𝑘−1 + 𝜂
[︁ 𝜕𝐸

𝜕𝐺𝑘−1

+ 𝜖(𝑡)
]︁
− 𝜂𝜅

⃒⃒⃒ 𝜕𝐸

𝜕𝐺𝑘−1

+ 𝜖(𝑡)
⃒⃒⃒
(𝐺𝑘−1 −𝐺𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑦) (3.9)
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which in return can be written in the continuum limit as:

�̇� = −𝜂
[︁𝜕𝐸
𝜕𝐺

+ 𝜖(𝑡)
]︁
− 𝜂𝜅

⃒⃒⃒𝜕𝐸
𝜕𝐺

+ 𝜖(𝑡)
⃒⃒⃒
(𝐺−𝐺𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑦) (3.10)

as previously shown in Eq.3.2, for 𝑓ℎ𝑎𝑟𝑑𝑤𝑎𝑟𝑒 = 𝐺−𝐺𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑦.

A powerful method to prove that asymmetric devices are fundamentally incom-

patible to be trained under SGD operation is showing that the optimum point for an

arbitrary optimization problem is not even stable in general for an asymmetric device

modulated using SGD-computed updates.

For the single parameter optimization described in Sec.3.1.1 to be convergent,

lim
𝑡→∞
⟨�̇�⟩ = 0 (3.11)

meaning that the conductance value will settle around the vicinity of a certain level,

which is labeled here as 𝐺𝑓𝑖𝑛𝑎𝑙. For the case of a single-parameter linear regression

example, 𝐺𝑓𝑖𝑛𝑎𝑙 represents the mean of the dataset.

It is important to realize that the updates over 𝐺 are computed using the scalar

error function 𝐸 of the optimization problem (𝐸 ∝ (𝐺 − 𝐺0)
2). Therefore, ideally,

when 𝐺← 𝐺𝑓𝑖𝑛𝑎𝑙:

⟨�̇�⟩ ∝
⟨𝜕𝐸
𝜕𝐺

⟩
= 0 (3.12)

for a successful training operation. However, for an asymmetric device, rewriting

Eqn.3.10, at convergence yields:

⟨�̇�⟩ = −𝜂
[︁⟨𝜕𝐸

𝜕𝐺

⟩
+ ⟨𝜖(𝑡)⟩

]︁
− 𝜂𝜅

⟨⃒⃒⃒𝜕𝐸
𝜕𝐺

+ 𝜖(𝑡)
⃒⃒⃒
.(𝐺−𝐺𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑦)

⟩
(3.13)

It is known that ⟨𝜖(𝑡)⟩ = 0 by definition, and ⟨�̇�⟩ = 0 from Eqn.3.12. Substituting

both yields:

⟨𝜕𝐸
𝜕𝐺

⟩
= −𝜅

⟨⃒⃒⃒𝜕𝐸
𝜕𝐺

+ 𝜖(𝑡)
⃒⃒⃒
.(𝐺−𝐺𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑦)

⟩
(3.14)
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Eqn.3.14 is the analytical expression, describing the competing-forces discussed in

Fig.3-3 in the main text. The left-hand side of the equation describes the force

exerted by the optimization process, trying to set 𝐺𝑓𝑖𝑛𝑎𝑙 → 𝐺0 (optimum of the

problem), whereas the right-hand side is the force that pulls 𝐺𝑓𝑖𝑛𝑎𝑙 → 𝐺𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑦 .

As shown in Fig.3-3, these two forces balance out one another to ultimately satisfy

Eqn.3.11, but this point bears no significance for the optimization problem at hand

(i.e. it does not satisfy Eqn.3.12).
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Figure 3-5: Interaction of device asymmetry and dataset standard deviation
[110]: Resultant optimization error as a function of standard deviation of the input
data for the single-parameter optimization example discussed in Sec.3.1.

Analytically solving Eqn.3.14 to find 𝐺𝑓𝑖𝑛𝑎𝑙 at steady state proves to be challeng-

ing, particularly due to the unknown nature of 𝜖(𝑡) for each different case. Nonethe-

less, the following observations can be made:

1. The state 𝐺𝑓𝑖𝑛𝑎𝑙 = 𝐺0 cannot be maintained at steady state, for which ⟨�̇�⟩ ̸= 0,

unless 𝐺0 coincides with 𝐺𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑦. As distance between 𝐺0 and 𝐺𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑦

increases, 𝐺𝑓𝑖𝑛𝑎𝑙 stabilizes further away from 𝐺0 (Fig.3-4B).

2. Increasing magnitude of stochasticity (and circuit noise elements which are not

included here for simplicity), and its distribution, strays 𝐺𝑓𝑖𝑛𝑎𝑙 further away

from 𝐺0 (Fig.3-5).
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3. Increasing amount of asymmetry (here represented with 𝜅) makes 𝐺𝑓𝑖𝑛𝑎𝑙 stabi-

lize further away from 𝐺0.

As a result, asymmetric devices cannot be used to perform training tasks with

SGD, as the optimal point is not even a dynamically stable point for asymmetric

devices to stay at during training.

3.1.3 Existing Methods to Battle Asymmetry-Related Accu-

racy Degradation

Despite numerous published simulated and experimental demonstrations, none of

these studies so far provides a solution for which the analog processor still achieves

its original purpose: energy-efficient acceleration of deep learning. The critical issue

with the existing techniques is the requirement of serial accessing to crosspoint ele-

ments one-by-one or row-by-row [16–23]. Methods involving serial operations include

reading conductance values individually, engineering update pulses to artificially force

symmetric modulation, and carrying or resetting weights periodically. Furthermore,

some approaches offload the gradient computation to digital processors, which not

only requires consequent serial programming of the analog matrix, but also bears the

cost of outer product calculation [19–23]. Updating an 𝑁 × 𝑁 crossbar array with

these serial routines would require at least 𝑁 or even 𝑁2 operations. For practical

array sizes, the update cycle would simply take too much computational time and

energy. In conclusion, for implementations that compromise parallelism, whether or

not the asymmetry issue is resolved becomes beside the point since computational

throughput and energy efficiency benefits over conventional digital processors are lost

for practical applications.

Examining the source of problem, one can realize that a method to reduce the

effect of 𝜖(𝑡)) would be to adopt a momentum-based method (e.g. Momentum-SGD,

Adam, AdaGrad, RMSProp). Such a method would certainly ameliorate the issue,

as it would strengthen the gradient, but it cannot be implemented in a parallel fash-

ion. Momentum SGD requires previous update matrices in the computation of the
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next update matrix. This indicates that all update matrices are computed and stored

explicitly (the outer product operation is executed in digital domain). Instead, the

parallel update method computes and applies those update matrices, without return-

ing the result of the outer product to the user. Therefore, it cannot be stored for

next update matrices for applying a gradient method. Furthermore, even if one were

to read the entire matrix before and after to generate the update matrix post-facto,

it would still not be enough to use a momentum method with parallel operations, as

there are element-wise operations required for the momentum SGD. It is therefore

urgent to devise a method that deals with device asymmetry while employing only

fully-parallel operations.

Recently, a novel fully-parallel training method, Tiki-Taka, was proposed to suc-

cessfully train DNNs based on asymmetric resistive devices with asymmetric modu-

lation characteristics [112]. This algorithm was empirically shown in simulation to

deliver ideal-device-equivalent classification accuracy for a variety of network types

and sizes emulated with asymmetric device models. However, the missing theoretical

underpinnings of the proposed algorithmic solution as well as the cost of doubling

analog hardware previously limited the method described in Ref. [112].

3.2 Analog Deep Learning with Stochastic Hamilto-

nian Descent

In contrast to SGD, the Stochastic Hamiltonian Descent (SHD) algorithm, illustrated

in Fig.3-6, is a fully-parallel training algorithm that separates both the forward path

and error backpropagation from the update function. For this purpose, two array pairs

(instead of a single pair), namely 𝐴𝑚𝑎𝑖𝑛, 𝐴𝑟𝑒𝑓 , 𝐶𝑚𝑎𝑖𝑛, 𝐶𝑟𝑒𝑓 are utilized to represent each

layer [112]. In this representation, 𝐴 = 𝐴𝑚𝑎𝑖𝑛 − 𝐴𝑟𝑒𝑓 stands for the auxiliary array

and 𝐶 = 𝐶𝑚𝑎𝑖𝑛 − 𝐶𝑟𝑒𝑓 stands for the core array.

The new training algorithm operates as follows. At the beginning of the training

process, 𝐴𝑟𝑒𝑓 and 𝐶𝑟𝑒𝑓 are initialized to 𝐴𝑚𝑎𝑖𝑛,𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑦 and 𝐶𝑚𝑎𝑖𝑛,𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑦, respectively
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Figure 3-6: Implementation of the Stochastic Hamiltonian Descent algo-
rithm on analog crossbar arrays [110]: Schematic and pseudocode of training
process using the SHD algorithm. The pseudocode only describes operations com-
puted in the analog domain, whereas digital computations such as nonlinear error
functions are not shown for simplicity.

(reasons will be clarified later), following the method described in Ref. [111]. As

illustrated in Fig.3-6, first, forward and backward pass cycles are performed on the

array-pair 𝐶 (Steps I and II), and corresponding updates are performed on 𝐴𝑚𝑎𝑖𝑛

(scaled by the learning rate 𝜂𝐴) using the parallel update scheme discussed in Ref. [13]

(Step III). In other words, the updates that would have been applied to 𝐶 in a

conventional SGD scheme are directed to 𝐴 instead.

Then, every 𝜏 cycles, another forward pass is performed on 𝐴, with a vector 𝑢,

which produces 𝑣 = 𝐴𝑢 (Step IV). In its simplest form, 𝑢 can be a vector of all "0"s

but one "1", which then makes 𝑣 equal to the row of 𝐴 corresponding to the location

of "1" in 𝑢. Finally, the vectors 𝑢 and 𝑣 are used to update 𝐶𝑚𝑎𝑖𝑛 with the same

parallel update scheme (scaled by the learning rate 𝜂𝐶) (Step V). These steps (IV

and V shown in Fig.3-6A) essentially partially add the information stored in 𝐴 to

𝐶𝑚𝑎𝑖𝑛.

At the end of the training procedure 𝐶 alone contains the optimized network, to

be later used in inference operations (hence the name core). Since 𝐴 receives updates

computed over 𝜕𝐸
𝜕𝐶
, which have zero-mean once 𝐶 is optimized, its active component,

𝐴𝑚𝑎𝑖𝑛, will be driven towards 𝐴𝑚𝑎𝑖𝑛,𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑦. The choice to initialize the stationary
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reference array, 𝐴𝑟𝑒𝑓 , at 𝐴𝑚𝑎𝑖𝑛,𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑦 ensures that 𝐴 = 0 at this point (i.e. when 𝐶

is optimized), thus generating no updates to 𝐶 in return.

With the choice of 𝑢 vectors made above, every time steps IV and V are performed,

the location of the "1" for the 𝑢 vector would change in a cyclic fashion, whereas in

general any set of orthogonal 𝑢 vectors can be used for this purpose [112]. Note that

these steps should not be confused with weight carrying [16, 17], as 𝐶 is updated by

only a fractional amount in the direction of 𝐴 as 𝜂𝐶 << 1 and at no point information

stored in 𝐴 is externally erased (i.e. 𝐴 is never reset). Instead, 𝐴 and 𝐶 create a

coupled-dynamical-system, as the changes performed on both are determined by the

values of one another.

Furthermore, it is critical to realize that the algorithm shown in Fig.3-6 consists

of only fully-parallel operations. Similar to steps I and II (forward and backward

pass on C), steps IV is yet another matrix-vector multiplication that is performed

by means of Ohm’s and Kirchhoff’s Laws. On the other hand, the update steps III

and V are performed by the stochastic update scheme [13]. This update method

does not explicitly compute the outer products (𝑥 × 𝛿 and 𝑢 × 𝑣), but instead uses

a statistical method to modify all weights in parallel proportional to those outer

products. As a result, no serial operations are required at any point throughout the

training operation, enabling high throughput and energy efficiency benefits in deep

learning computations.

3.2.1 Mathematical Modeling of Device Asymmetry Under

SHD

This section will parallel the derivations carried out in Sec.3.1.2 and demonstrate

the nature of the critical difference between SHD and SGD that resolves the afore-

mentioned stability problem.

For SHD, 𝐴 = 𝐴𝑚𝑎𝑖𝑛 − 𝐴𝑟𝑒𝑓 gets updates computed over 𝐶 = 𝐶𝑚𝑎𝑖𝑛 − 𝐶𝑟𝑒𝑓 .

Writing the evolution of 𝐴 in terms of the PDE given in Eqn.3.10:
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�̇�𝑚𝑎𝑖𝑛 = 𝜂𝐴

[︁ 𝜕𝐸

𝜕(𝐶𝑚𝑎𝑖𝑛 − 𝐶𝑟𝑒𝑓 )
+𝜖(𝑡)

]︁
−𝜂𝐴𝜅𝐴

⃒⃒⃒ 𝜕𝐸

𝜕(𝐶𝑚𝑎𝑖𝑛 − 𝐶𝑟𝑒𝑓 )
+𝜖(𝑡)

⃒⃒⃒
(𝐴𝑚𝑎𝑖𝑛−𝐴𝑚𝑎𝑖𝑛,𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑦)

(3.15)

�̇�𝑟𝑒𝑓 = 0 (3.16)

Writing the same for 𝐶 which is updated by means of partial additions of 𝐴:

�̇�𝑚𝑎𝑖𝑛 = 𝜂𝐶(𝐴𝑚𝑎𝑖𝑛 − 𝐴𝑟𝑒𝑓 )− 𝜂𝐶𝜅𝐶 |(𝐴𝑚𝑎𝑖𝑛 − 𝐴𝑟𝑒𝑓 )|(𝐶𝑚𝑎𝑖𝑛 − 𝐶𝑚𝑎𝑖𝑛,𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑦) (3.17)

�̇�𝑟𝑒𝑓 = 0 (3.18)

Note that in the actual discrete time evolution of these systems, the time-steps of

𝐴𝑚𝑎𝑖𝑛 and 𝐶𝑚𝑎𝑖𝑛 are not necessarily the same, due to the presence of 𝜏 , which is

ignored here for simplicity. In steady state, both 𝐴𝑚𝑎𝑖𝑛 and 𝐶𝑚𝑎𝑖𝑛 will converge to the

vicinity of certain values (𝐴𝑚𝑎𝑖𝑛,𝑓𝑖𝑛𝑎𝑙, 𝐶𝑚𝑎𝑖𝑛,𝑓𝑖𝑛𝑎𝑙), for which ⟨�̇�𝑚𝑎𝑖𝑛⟩ = ⟨�̇�𝑚𝑎𝑖𝑛⟩ = 0.

Therefore, taking the time averages of Eqns.3.15 and 3.17 in steady state, and

substituting ⟨𝜖(𝑡)⟩ = 0 yield:

⟨ 𝜕𝐸

𝜕(𝐶𝑚𝑎𝑖𝑛 − 𝐶𝑟𝑒𝑓 )

⟩
= 𝜅𝐴

⟨⃒⃒⃒ 𝜕𝐸

𝜕(𝐶𝑚𝑎𝑖𝑛 − 𝐶𝑟𝑒𝑓 )
+ 𝜖(𝑡)

⃒⃒⃒
.(𝐴𝑚𝑎𝑖𝑛−𝐴𝑚𝑎𝑖𝑛,𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑦)

⟩
(3.19)

⟨𝐴𝑚𝑎𝑖𝑛⟩ − 𝐴𝑟𝑒𝑓 = 𝜅𝐶⟨|(𝐴𝑚𝑎𝑖𝑛 − 𝐴𝑟𝑒𝑓 )|.(𝐶𝑚𝑎𝑖𝑛 − 𝐶𝑚𝑎𝑖𝑛,𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑦)⟩ (3.20)

The ultimate goal of any optimization task is to achieve and maintain 𝐺𝑓𝑖𝑛𝑎𝑙 ≈ 𝐺0

at steady state, which translates to left-hand side of Eqn.3.19 (similar to Eqn.3.14)

being 0. For Eqn.3.14, this was not possible as the right-hand side was non-zero

in general for that state, making the optimum point unstable. The key difference

of SHD is that since 𝐴𝑚𝑎𝑖𝑛 and 𝐶𝑚𝑎𝑖𝑛 are different parameters, left hand side of
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Eqn.3.19 can be satisfied by 𝐶𝑚𝑎𝑖𝑛 ≈ 𝐶0 whereas right-hand side can be 0 when

𝐴𝑚𝑎𝑖𝑛 ≈ 𝐴𝑚𝑎𝑖𝑛,𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑦 in steady state.

On the other hand, examination of Eqn.3.20 reveals a critical requirement for

SHD to work, which is setting 𝐴𝑟𝑒𝑓 = 𝐴𝑚𝑎𝑖𝑛,𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑦 (i.e. zero shifting, [111]). Under

this condition and an appropriately small choice of 𝜂𝐴, ⟨𝐴𝑚𝑎𝑖𝑛⟩ − 𝐴𝑟𝑒𝑓 ≈ ⟨|𝐴𝑚𝑎𝑖𝑛 −

𝐴𝑟𝑒𝑓 |⟩ ≈ 0 since 𝐴𝑚𝑎𝑖𝑛 changes in the very close vicinity of 𝐴𝑚𝑎𝑖𝑛,𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑦 in steady

state. Furthermore, ⟨𝐴⟩ ≈ 0 also indicates that the change in 𝐶𝑚𝑎𝑖𝑛 is negligible

since the value of 𝐴 is the driving force of 𝐶𝑚𝑎𝑖𝑛. This property allows us to treat

(𝐶𝑚𝑎𝑖𝑛 − 𝐶𝑚𝑎𝑖𝑛,𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑦) in Eqn.3.20 as a constant and take the term out of the

averaging operator.

Overall, SHD does not suffer from SGD’s fundamental incompatibility with asym-

metric devices and therefore, asymmetric devices can be used in optimization tasks

under SHD-based training.

3.2.2 Analysis of Device Asymmetry Under SHD

For the same linear regression problem studied in Sec.3.1.2, the discrete-time update

rules given in Fig.3-6A can be rewritten as a pair of differential equations in the

continuum limit that describe the time evolution of subsystems 𝐴 and 𝐶 as:

�̇� = −𝜂𝐴
[︁𝜕𝐸
𝜕𝐶

+ 𝜖(𝑡)− 𝜂𝐴𝜅𝐴

⃒⃒⃒𝜕𝐸
𝜕𝐶

+ 𝜖(𝑡)
⃒⃒⃒
(𝐴𝑚𝑎𝑖𝑛 − 𝐴𝑚𝑎𝑖𝑛,𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑦) (3.21)

�̇� = −𝜂𝐶𝐴 + 𝜂𝐶𝜅𝐶 |𝐴|(𝐶𝑚𝑎𝑖𝑛 − 𝐶𝑚𝑎𝑖𝑛,𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑦) (3.22)

It can be noticed that this description of the coupled system has the same ar-

rangement as the equations governing the motion of a damped harmonic oscilla-

tor (Fig.3-7). In this analogy, subsystem 𝐴 corresponds to velocity, 𝜈, while sub-

system 𝐶 maps to position, 𝑥, allowing the scalar error function of the optimiza-

tion problem, (𝐶 − 𝐶0)
2, to map onto the scalar potential energy of the physical
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framework, 1/2𝑘𝑠𝑝𝑟𝑖𝑛𝑔(𝑥− 𝑥0)
2. Moreover, for implementations with asymmetric de-

vices, an additional force term, 𝐹ℎ𝑎𝑟𝑑𝑤𝑎𝑟𝑒, needs to be included in the differential

equations to reflect the hardware-induced effects on the conductance modulation.

As discussed earlier, for the device model shown in Fig.3-3A this term is propor-

tional to 𝐴𝑚𝑎𝑖𝑛 − 𝐴𝑚𝑎𝑖𝑛,𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑦. Assuming 𝐴𝑟𝑒𝑓 = 𝐴𝑚𝑎𝑖𝑛,𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑦 (this assumption

will be explained later), 𝐹ℎ𝑎𝑟𝑑𝑤𝑎𝑟𝑒 can be rewritten as a function of 𝐴𝑚𝑎𝑖𝑛 − 𝐴𝑟𝑒𝑓 ,

which then resembles a drag force, 𝐹𝑑𝑟𝑎𝑔, that is linearly proportional to velocity

(𝜈 ∝ 𝐴 = 𝐴𝑚𝑎𝑖𝑛−𝐴𝑟𝑒𝑓 ) with a variable (but strictly nonnegative) drag coefficient𝑘𝑑𝑟𝑎𝑔.

In general, the 𝐹ℎ𝑎𝑟𝑑𝑤𝑎𝑟𝑒 term can have various functional forms for devices with differ-

ent conductance modulation characteristics but is completely absent for ideal devices.

Note that, only to simplify the physical analogy, the effect of asymmetry in subsystem

𝐶 is ignored here, which yields the equation shown in Fig.3-7 (instead of Eq.3.22).

This decision will be justified and derived in detail in Sec.3.2.1.

Figure 3-7: Physical analogy between SHD algorithm and damped harmonic
oscillator [110]: Differential equations describing the evolution of the parameters
with the SHD training algorithm in the continuum limit, in comparison to those of
motion describing the dynamics of a harmonic oscillator
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Analogous to the motion of a lossless harmonic oscillator, the steady-state solu-

tion for this modified optimization problem with ideal devices (i.e. 𝐹ℎ𝑎𝑟𝑑𝑤𝑎𝑟𝑒 = 0)

has an oscillatory behavior (Fig3-8A). This result is expected, as in the absence of

any dissipation mechanism, the total energy of the system cannot be minimized (it is

constant) but can only be continuously transformed between its potential and kinetic

components. On the other hand, for asymmetric devices, the dissipative force term

𝐹ℎ𝑎𝑟𝑑𝑤𝑎𝑟𝑒 gradually annihilates all energy in the system, allowing 𝐴 ∝ 𝜈 to converge

to 0 (𝐸𝑘𝑖𝑛𝑒𝑡𝑖𝑐 → 0) while 𝐶 ∝ 𝑥 converges to 𝐶0 ∝ 𝑥0(𝐸𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙 → 0). Based on

these observations, the new training algorithm is renamed as Stochastic Hamiltonian

Descent (SHD) to highlight the evolution of the system parameters in the direction

of reducing the system’s total energy (Hamiltonian). These dynamics can be visu-

alized by plotting the time evolution of 𝐴 versus that of 𝐶, which yields a spiraling

path representing decaying oscillations for the optimization process with asymmet-

ric devices (Fig3-8B), in contrast to elliptical trajectories observed for ideal lossless

systems (Fig3-8A).

Following the establishment of the necessity to have dissipative characteristics,

here the conditions at which device asymmetry provides this behavior is analyzed.

It is well-understood in mechanics that for a force to be considered dissipative, its

product with velocity (i.e. power) should be negative (otherwise it would imply

energy injection into the system). In other words, the hardware-induced force term

𝐹ℎ𝑎𝑟𝑑𝑤𝑎𝑟𝑒 = −𝜅𝐴𝜂𝐴
⃒⃒
𝜕𝐸
𝜕𝐶

+ 𝜖(𝑡)
⃒⃒
(𝐴𝑚𝑎𝑖𝑛 − 𝐴𝑚𝑎𝑖𝑛,𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑦) and the velocity, 𝜈 = 𝐴𝑚𝑎𝑖𝑛 −

𝐴𝑟𝑒𝑓 , should always have opposite signs. Furthermore, from the steady-state analysis,

for the system to be stationary (𝜈 = 0) at the point with minimum potential energy

(𝑥 = 𝑥0), there should be no net force (𝐹 = 0). Both of these arguments indicate that,

for the SHD algorithm to function properly, 𝐴𝑟𝑒𝑓 must be set to 𝐴𝑚𝑎𝑖𝑛,𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑦. Note

that as long as the crosspoint elements are realized with asymmetric devices (opposite

to SGD requirement) and a symmetry point exists for each device, the shape of their

modulation characteristics is not critical for successful DNN training with the SHD

algorithm.

A critical aspect to note is that the SGD and the SHD algorithms are funda-
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Figure 3-8: Comparison of single parameter regression training under SHD
algorithm for symmetric and asymmetric devices [110]: (A)Simulated results
for a single-parameter optimization task using the SHD algorithm with symmetric
devices described in Fig.3-2A. B The same experiment conducted for asymmetric
devices described in Fig.3-3A.

mentally disjunct methods governed by completely different dynamics. The SGD

algorithm attempts to optimize the system parameters while disregarding the effect

of device asymmetry and thus converges to the minimum of a wrong energy function.

On the other, the system variables in an SHD-based training do not conventionally

evolve in directions of the error function gradient, but instead, are tuned to minimize

the total energy incorporating the hardware-induced terms. The most obvious man-

ifestation of these properties can be observed when the training is initialized from

the optimal point (i.e. the very lucky guess scenario) since any “training” algorithm

should at least be able to maintain this optimal state. For the conventional SGD,

when 𝑊 = 𝑊0, the zero-mean updates applied to the network were shown above to
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drift 𝑊 away from 𝑊0 towards 𝑊𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑦. On the other hand, for the SHD method,

when 𝐴 = 0 and 𝐶 = 𝐶0, the zero-mean updates applied on 𝐴 do not have any adverse

effect since 𝐴𝑚𝑎𝑖𝑛 is already at 𝐴𝑚𝑎𝑖𝑛,𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑦 for 𝐴 = 0. Consequently, no updates are

applied to 𝐶 either as �̇� = 𝐴 = 0. Therefore, it is clear that SGD is fundamentally

incompatible with asymmetric devices, even when the solution is guessed correctly

from the beginning, whereas the SHD does not suffer from this problem. Note that the

propositions made for SGD can be further generalized to other crossbar-compatible

training methods such as equilibrium propagation [113] and deep Boltzmann ma-

chines [114], which can also be adapted to be used with asymmetric devices following

the approach discussed here.

Finally, it is obvious large-scale neural networks are much more complicated sys-

tems with respect to the problem analyzed here. Similarly, different analog devices

show a wide range of conductance modulation behaviors, as well as bearing other

non-idealities such as analog noise, imperfect retention, and limited endurance as ex-

plained in detail in Chap.2. However, the theory described here finally provides an

intuitive explanation for: (1) why device asymmetry is fundamentally incompatible

with SGD-based training and (2) how to ensure accurate optimization while only us-

ing fully-parallel operations. The author thereby concludes that asymmetry-related

issues within SGD should be analyzed in the context of competing equilibria, where

the optimum for the classification problem is not even a stable solution at steady-state.

In addition to this simple stability analysis, the insight to modify the optimization

landscape to include nonideal hardware effects allows other fully-parallel solutions to

be designed in the future using advanced concepts from optimal control theory. As a

result, these parallel methods enable analog processors to provide high computational

throughput and energy efficiency benefits over their conventional digital counterparts.

3.2.3 Hardware Cost Reduction of SHD Implementation

Considering a sequence of 𝑚 + 𝑛 incremental and 𝑛 decremental changes at random

order, the net modulation obtained for a symmetric device is on average 𝑚. On the

other hand, for asymmetric devices the conductance value eventually converges to the
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symmetry point for increasing 𝑛 (irrespective of m or the initial conductance). It can

be seen by inspection that for increasing statistical variation present in the training

data (causing more directional changes for updates), the effect of device asymmetry

gets further pronounced, leading to heavier degradation of classification accuracy for

networks trained with conventional SGD (See Fig.3-5). However, this behavior can

alternatively be viewed as nonlinear filtering, where only signals with persistent sign

information, 𝑚/(𝑚 + 2𝑛), are passed. Indeed, the SHD algorithm exploits this prop-

erty within the auxiliary array, 𝐴, which filters the gradient information that is used

to train the core array, 𝐶. As a result, 𝐶 is updated with less frequency and only in

directions with a high confidence level of minimizing the error function of the problem

at hand. A direct implication of this statement is that the asymmetric modulation be-

havior of 𝐶 is much less critical than that of 𝐴 for successful optimization as its update

signal contains less amount of statistical variation. Therefore, symmetry point infor-

mation of 𝐶𝑚𝑎𝑖𝑛 is not relevant either. This property is further evidenced, in Fig.3-9

when a mismatch of various degrees is intentionally introduced between the reference

array and the symmetry values of its respective main array. It can be seen that while

such a mismatch leads to classification performance degradation for 𝐴, such an effect

is completely absent for 𝐶. Using these results and intuition, the original algorithm

is modified by discarding 𝐶𝑟𝑒𝑓 and using 𝐴𝑟𝑒𝑓 (set to 𝐴𝑚𝑎𝑖𝑛,𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑦) as a common

reference array for differential readout. This modification reduces the hardware cost

of SHD implementations by 50% to significantly improve their practicality [115].

3.2.4 Experimental Demonstration of the SHD Algorithm

A small scale experimental demonstration was made with metal-oxide based electro-

chemical devices (also called as electrochemical random access memory, ECRAM) re-

ported in Ref. [52] (Fig.3-10A). These devices are three-terminal, voltage-controlled

crosspoint elements, and can be considered as an oxygen-ion based alternative to the

devices presented in Chap.2. For the demonstration of the modified training algo-

rithm, a 2-parameter optimization problem was chosen with a synthetic dataset 𝑥1,2

and 𝑦 of form 𝑦 = 𝑡1𝑥1 + 𝑡2𝑥2 + 𝛾, where 𝑡1,2 are the unknowns searched for and 𝛾 is
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Figure 3-9: Reference array initialization sensitivity of subsystems 𝐴 and
𝐶 [110]: (A) The learning curve for different levels (i.e. standard deviation, 𝜎) of
discrepancy introduced between 𝐴𝑟𝑒𝑓 and 𝐴𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑦, while 𝐶𝑟𝑒𝑓 is accurately initial-
ized to 𝐶𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑦. (B) The same experiment conducted for 𝐶𝑟𝑒𝑓 . Training simulations
were performed for the convolutional neural network on MNIST dataset, which was
previously studied in Ref. [10]. The average baseline error (only the final value) for
ideal devices with conventional SGD is shown with the dashed line.

the Gaussian noise.

As can be seen from the connection scheme shown in Fig.3-10C, 𝐴𝑚𝑎𝑖𝑛 and 𝐶𝑚𝑎𝑖𝑛

are represented with conductance values of physical devices, while the reference ar-

rays containing symmetry point information are stored in digital (as they remain

unchanged throughout the training). Note that allocating reference arrays in digital

is not a scalable solution for large arrays and is only implemented here for simplicity.

The modulation characteristics obtained for one of the devices is shown in Fig.3-10B,

where "crossed-swords" behavior is observed with a well-defined symmetry point.

During forward and backward pass cycles, input values (from the training set)

were represented with different voltage levels and output results were obtained via

measuring the line currents. Note that in an actual implementation representing

input values with different pulse widths rather than amplitudes might be beneficial,

avoiding nonlinear conductance of the crosspoint elements for accurate vector-matrix
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Figure 3-10: Experimental setup using metal-oxide based programmable re-
sistors [110]: (A) Optical micrograph of metal-oxide based electrochemical devices,
also referred to as MO-ECRAM [52]. Note that the image shows an integrated array
whereas experiments were conducted with individual devices connected externally.
(B) Conductance modulation characteristics obtained for one of the devices, show-
ing "crossed-swords" behavior with a well-defined symmetry point. (C) Schematic
for array configuration used in 2-parameter optimization with SHD algorithm. All
steps are shown using the same notation used in Fig.3-6 except for the backward
pass (Step II) which is not required for a single layer network. For training, sum of
squared errors is used to calculate the scalar error and vector 𝛿, 𝐶𝑚𝑎𝑖𝑛 is updated once
every 10 samples (i.e. 𝜏 = 10) whereas [1, 0] and [0, 1] were used in Step IV (as 𝑢
vectors). For simplicity, the reference arrays containing symmetry point information
are stored in digital (as they remain unchanged throughout the training).

multiplication. Following the generation of the update vectors, 𝑥 and 𝛿, the array is

programmed in parallel using stochastic updating with half-bias voltage scheme as

explained in Ref. [13].
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Figure 3-11: Experimental demonstration of the SHD algorithm on two-
parameter regression [110]: Evolution of device conductances for the first (𝐴1, 𝐶1)
and the second (𝐴2, 𝐶2) parameters. Plotting the values of A versus C produces the
distinctive spiraling image, as expected from the theoretical analysis.

The array training results using the modified training algorithm are shown in

Fig.3-11. It can be seen that for both parameters, the steady-state solutions for

𝐴1,2 match the symmetry points, while those of 𝐶1,2 successfully converge to the

optimal values. Moreover, the distinctive spiraling behavior indicating the dynamics

of dissipative mechanical systems was observed for both variables.
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3.3 Simulated Neural Network Training Results

The description of asymmetry as the mechanism of dissipation indicates that it is

a necessary and useful device property for convergence within the SHD framework.

However, this argument does not imply that the convergence speed would be deter-

mined by the magnitude of device asymmetry for practical-sized applications. Unlike

the single-parameter regression problem considered above, the exploration space for

DNN training is immensely large, causing optimization to take place over many it-

erations of the dataset. In return, the level of asymmetry required to balance (i.e.

damp) the system evolution is very small and can be readily achieved by any practical

level of asymmetry.

To prove these assertations, simulated results are shown in Fig.3-12 for a Long

Short-Term Memory (LSTM) network, using device models with increasing levels

of asymmetry, trained with both the SGD and SHD algorithms. The network was

trained on Leo Tolstoy’s War and Peace novel, to predict the next character for a given

text string. This dataset consists of 3, 258, 246 characters, which is then split into

training and test sets as 2, 933, 246 and 325, 000 characters, respectively. The network

is trained to have a vocabulary of 87 distinct characters. A hidden vectors of 64-cell

size was chosen, which corresponds to approximately 77, 000 weights for the complete

network. Full details of the network architecture can be found in Ref. [116]. For

reference, training the same network with a 32-bit digital floating-point architecture

yields a cross-entropy level of 1.33. This network was deliberately chosen as LSTM’s

are known for being particularly vulnerable to device asymmetry [117].

The simulation framework used here is the same that was used in Ref. [10,13,112,

117]. The simulations start with instantiating 3 devices per weight. Each device pa-

rameter (e.g. number of states, asymmetry factor, symmetry point) is generated with

a given mean and standard variation, such that no two devices are the same. More-

over, these device parameters also bear cycle-to-cycle variation, defined by another

parameter, to make the operation more realistic.

The asymmetry model is defined the same way shown in Eqn.3.5, yielding a behav-
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ior similar to those shown in Fig.3-3A. The perfectly symmetric device model uses

𝜅 = 0, while other traces use values of 0.1, 0.3, and 0.5 in increasing asymmetry order.

A 10% device-to-device variation was used across the crosspoint elements, which is

implemented in a multiplicative fashion to the average respective 𝜅. In other words,

more symmetric device models are picked from a narrower bundle, while the highly

asymmetric device models also have higher-variation. Throughout the simulation, a

30% cycle-to-cycle variation is employed to account for uncontrollable device behav-

ior, which is commonly seen in the field. Devices belonging to 𝐴𝑚𝑎𝑖𝑛 and 𝐴𝑟𝑒𝑓 are

initialized at 𝐴𝑚𝑎𝑖𝑛,𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑦, while 𝐶𝑚𝑎𝑖𝑛 was initialized with a random distribution

that is determined by the layer size.

The incremental changes are set such that devices have on average 1200 pro-

grammable states within their dynamic range. Through setting the gain factors at

the integrator terminals appropriately, the average full conductance range of devices

are adjusted to be equivalent ±2 arbitrary units. Consistent with this notation, the

integrators are set to saturate at ±40 arbitrary units. ADCs were defined to use

9-bit resolution whereas 7-bit resolution was selected for the DACs where the output-

referred noise level was set at 0.02 arbitrary units. This selection was made in order

not to be limited by noise-related performance degradation, as studied by Ref. [10].

Noise, Bound, and Update management techniques were employed, which can be

found in detail in disclosures [118] and [119] respectively.

In the update cycle, the maximum allowed number of pulses (i.e. bit length, BL)

was set to be 100. However, as update management determines this number on-the-

go depending on certain characteristics of the update vectors and device parameters,

real BL was less than 10 for the most of the training. Although it is not the version

used in this thesis, IBM has recently made a similar simulation platform open-access

to the public (https://github.com/ibm/aihwkit), which can be used to reproduce the

same results.

The insets in Fig.3-12A show the average conductance modulation characteris-

tics representative for each asymmetry level. The learning curves show the evolution

of the cross-entropy error, which measures the performance of a classification model,
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Figure 3-12: Simulated training results for different resistive device tech-
nologies [110]: (A) Simulated learning curves of a Long Short-Term Memory
(LSTM) network trained on Leo Tolstoy’s War and Peace novel, using different cross-
point device models under the SGD algorithm. Details of the network can be found
in Ref. [116] (B) Simulated learning curves for the same network using the SHD al-
gorithm.

with respect to the epochs of training. First, Fig.3-12A shows that even for mini-

mally asymmetric devices (blue trace) trained with SGD, the penalty in classification

performance is already severe. This result also demonstrates once more the difficulty

of engineering a device that is symmetric-enough to be trained accurately with SGD.

On the other hand, for SHD (Fig.3-12B), all depicted devices are trained success-

fully. Note that this statement does not apply to abrupt-switching devices, such as

PCMs, as they do not bear a well-defined symmetry point. As a result, neither SGD

not SHD can achieve successful training results with such devices when all operations

are kept fully-parallel.

The most important implication of the data presented in Fig.3-12B is that when

one combines the highly symmetric devices shown in this Chap.2 (blue curve), and

the SHD training algorithm shown here, the training results can be faster and more

accurate, compared to those of nonexistent "ideal" devices trained with SGD. Even
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Figure 3-13: Simulated training results for PCM-like devices. [110]: (A)
Simulated learning curves of the LSTM network shown in Fig.3-12 using PCM device
models under the SGD algorithm. Conductance modulation characteristics for a
typical PCM device is given in the inset. SGD baseline corresponds to training with
perfectly symmetric device. (B) Simulated learning curves of the same network using
PCM device models under the SHD algorithm. SHD baseline corresponds to training
with device model labeled as “low” asymmetry.

though analog computing has been long thought as a faster and more energy effi-

cient alternative to their conventional digital counterparts, having higher accuracy or

generalization performance has never been even remotely considered (due to many

device and architecture imperfections). However, the work in this thesis proves that

understanding the analog computing concept at multiple levels can not only resolve

longstanding problems but also unlock such potential.

3.4 Conclusion

In this chapter, it was first clarified that the stochastic gradient descent algorithm

is intrinsically unsuitable for analog crossbar training with non-ideal devices, due to

competing dynamics imposed by the optimization problem and the physical behavior

of crosspoint elements. This incompatibility explains the heavy degradation of clas-
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sification accuracy for analog deep learning implementations with SGD as well as the

difficulties observed so far to find a solution that does not sacrifice the parallelism of

the framework. Indeed, the only fully parallel method proposed so far uses a different

training algorithm altogether instead of enduring the complications of conventional

SGD.

It was revealed here that this modified algorithm creates a coupled system dis-

playing dynamics that resembles the motion of a classical system. In this method,

device asymmetry plays a critical role by providing the mechanism of dissipation nec-

essary for the convergence of the system. Therefore, as opposed to SGD, asymmetric

devices with well-defined and stable symmetry points are required for the successful

operation of the modified algorithm. The experimental demonstration of this method

using metal-oxide based electrochemical devices validated these theoretical under-

standings as well as testing the algorithm in combination with real-implementation

effects related to stochastic updating with half-bias programming scheme, device-to-

device cross-talk, conductance retention, and modulation endurance. This algorithm

is found to be suitable for many resistive technologies, as long as devices show smooth

and bidirectional conductance modulation characteristics.
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Chapter 4

Conclusion and Future Directions

Analog deep-learning architectures can provide orders of magnitude higher process-

ing speed and energy-efficiency compared to traditional digital processors. This is

imperative for the promise of artificial intelligence to be realized. However, the im-

plementation of analog accelerators faces a significant barrier comprising two coupled

components: 1) the absence of devices that satisfy stringent algorithm-imposed de-

mands and 2) algorithms that can tolerate inevitable device nonidealities. This thesis

showed advancement along both directions introducing a novel near-ideal device tech-

nology and a superior neural network training algorithm. The devices first realized

here are CMOS-compatible nanoscale protonic programmable resistors that incor-

porate the benefits of nanoionics with extreme acceleration of ion transport under

strong electric fields. Enabled by a material-level breakthrough of utilizing phospho-

silicate glass (PSG) as a proton electrolyte, these devices achieved controlled proton

intercalation in nanoseconds with high energy-efficiency. Separately, the theoreti-

cal underpinnings behind why device asymmetry is fundamentally incompatible with

conventional neural network training algorithms were explained. By establishing a

powerful analogy with classical mechanics, a novel method, Stochastic Hamiltonian

Descent, is developed to exploit device asymmetry as a useful feature instead. In com-

bination, the two developments presented in this thesis can be effective in ultimately

realizing the potential of analog deep learning.

These advancements beg the question, what is next? Undoubtedly, nanosecond
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and sub-picojoule operation is a must for any technology aiming to realize analog

training accelerators. For protonic devices, this was only made possible by applying a

high-enough electric field that effectively removes the energy barriers for bulk proton

transport as well as charge-transfer reactions at the interface. However, for PSG,

achieving this property required a high gate voltage. Future studies surely need

to reduce the operation voltage under 1 V, without compromising speed or energy

efficiency. Obviously, reducing the electrolyte thickness allows achieving the same

field with less voltage, which was indeed utilized here. However, even an aggressive

thinning down to 1 nm may not be enough due to the insertion limited dynamics, while

probably losing electronic insulation capabilities in doing so. Therefore, the future

work will need to optimize electrolytes with lower initial barrier heights and engineer

interfaces for facile electrochemical insertion. The author suggests mechanical or

chemical treatments of the electrolyte and its interfaces can achieve these goals, such

as acid-bathing or He-ion irradiation.

The author strongly believes that the implications of the devices studied in Chap.

2 go far beyond analog deep learning, in particular to opening up new possibilities in

solid-state nanoionics. Protons, among all ions, is the closest to electrons in achieving

ballistic transport. Indeed in liquid water, proton motion is known to have significant

quantum character, with activation-less quantum nuclear dynamics in some exchange

events between water molecules [120]. Thus under a high enough electric field that

tilts the energy landscape to the point at which the migration energy barrier is reduced

to below a few 𝑘𝐵𝑇 , classical or quantum ballistic transport of protons in solids may

be realized. As the proton mass is only 1800× the free-electron mass, comparable to

the effective electronic band mass in some heavy-Fermion solids, it is highly intriguing

to consider the potential for exotic nuclear transport under strong fields. In addition

to scientific interest, these results also open up possibilities in other applications

wherever fast ion motion is required, such as microbatteries, artificial photosynthesis,

and light-matter interactions.

As regarding the algorithms, it must not be forgotten that the Stochastic Hamil-

tonian Descent algorithm only resolves the degradation issues related to asymmetric
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device modulation. However, there are a multitude of other analog element non-

idealities such as noise, high-variability, conductance drift, limited number of states.

Algorithms can be further advanced to ameliorate if not mitigate the effects of such im-

perfections. An interesting way forward could see implementation of SHD for digital

neural network training with simulated asymmetry. The filtering dynamics described

above allows SHD to guide its core component selectively in directions with high sta-

tistical persistence. Therefore, at the expense of increasing the overall memory and

number of operations, SHD might outperform conventional training algorithms by

providing faster convergence, better classification accuracy, and/or superior general-

ization performance.

The main conclusion of this thesis is analog deep learning is not simply using

analog devices for deep learning algorithms. Therefore, it can’t simply adopt and

merge existing solutions from established fields and anything less than a complete

application-specific redesign is bound to fail. For example, most mature devices are

descendants of memory technologies, which never considered incremental symmetric

modulation between a high number of states. Similarly, the 175 year old gradient

descent algorithm obviously was not designed for anything similar to asymmetric

updates. This argument goes far deeper. The highly unwanted volatility for memory

applications, can be beneficial as weight decay [121], nonvolatile voltage dependence

can be used to implement half-select [13], and compounded-response for successive

pulses with same polarity can act as a momentum term [122]. It was demonstrated

here that even the role of asymmetry can be reversed from a major technical barrier

to a key feature with original, application-specific thinking. As interesting as level-

specific studies are, the author finds it implausible to realize analog deep learning with

segregated efforts and urges vertical collaboration focusing on large scale applications.

Even though the early attempts might likely fail, the learnings would be invaluable

in setting accurate benchmarks, standardizing methods, unifying terminology, and

aligning the goals of multiple disciplines. This work, can hopefully be the first of

many software-hardware hybrid studies to shape the future of analog deep learning.
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Chapter 5

Appendix

5.1 Process Engineering and Additional Device Re-

sults

5.1.1 Undercut Profile of WO3

A key feature of the microscale protonic programmable resistors discussed in Sec.2.4

is the WO3 undercut, as shown in Fig.2-5B. This step utilizes wet etching of WO3 in

CD-26 (dilute TMAH). However, as can be seen from Fig.5-1, only amorphous WO3

gets attacked by this process, resulting with failure of polycrystalline-channel devices

fail under the process described in Sec.2.4.

5.1.2 Optimization of Palladium Reservoir Thickness

In early fabrication attempts, thicker Pd reservoir layers were used in order to reduce

the parasitic gate resistance. However, as can be seen in Fig.5-2, upon insertion into

forming gas, Pd uptakes considerable amount of hydrogen and expands in volume. For

layers with high volume/surface ratio, this results in a loss of adhesion and therefore

is highly undesirable. Following the observation of these effects, the Pd thickness was

kept under 10 nm, for which these effects have found to be completely absent.
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Figure 5-1: Undercut profile engineering for WO3: (A) 45∘ top view SEM
image of a microscale device with amorphous WO3 channel. The concentric horizontal
ellipses in the middle correspond to the outlines of PSG and WO3 where the gap
between the two indicates successful undercut as explained in Fig.2-5. (B) The same
feature is absent for polycrystalline WO3 as crystallization of the material significantly
increases its resistance to TMAH-based wet etching step.

Figure 5-2: Exfoliation of thick Pd layer under forming gas: Photographs of
different chips with Pd thickness >10 nm evidencing the material expands in volume
when introduced into a forming gas environment and ultimately loses adhesion.

5.1.3 Fabrication Flow for Microscale Protonic Programmable

Resistors

� Atomic Layer Deposition (ALD) of 10/90 nm HfO2/Al2O3 on 1×1 cm2 SiO2/Si

pieces.
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� Patterning a bilayer of polymethylglutarimide (PMGI) and Microposit S1813

using a Heidelberg maskless aligner (MLA) 150 for source/drain contact layer

lift-off.

� Electron-beam evaporation of 15/5 nm of Au/Cr layer using AJA evaporation

system, followed by lift-off step in NMP.

� Deposition of 10 nm amorphous WO3 using ALD with Bis(tert-butylimino)-

bis(dimethylamino)tungsten (VI) (BTBMW) and O3 precursors at 330 ∘C.

� Plasma-Enhanced Chemical Vapor Deposition (PECVD) of PSG layer using

1420 sccm N2O, 12 sccm SiH4, and 12 sccm PH3 (2% in H2) at 100 ∘C, with a

RF plasma power of 60 W at 300 kHz.

� Patterning a Microposit S1813 using a Heidelberg maskless aligner (MLA) 150

as a soft-mask for the active layer.

� Patterning of both PSG and WO3 layers using Reactive Ion Etching (RIE) with

a CF4 plasma at 100 W for 3×60 s.

� Selective wet-etching (undercut) of theWO3 layer in MF CD-26 (diluted TMAH)

at room temperature.

� Patterning a bilayer of polymethylglutarimide (PMGI) and Microposit S1813

using a Heidelberg maskless aligner (MLA) 150 for gate contact layer lift-off.

� Electron-beam evaporation of 5 nm of Pd layer using AJA evaporation system,

followed by lift-off step in NMP.

� Patterning a bilayer of polymethylglutarimide (PMGI) and Microposit S1813

using a Heidelberg maskless aligner (MLA) 150 for pad lift-off.

� Electron-beam evaporation of 150/10 nm of Au/Cr layer using AJA evaporation

system, followed by lift-off step in NMP.

5.1.4 Fabrication Flow for Nanoscale Protonic Programmable

Resistors

� Atomic Layer Deposition (ALD) of 10/40 nm HfO2/Al2O3 on 1×1 cm2 SiO2/Si

pieces.
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� Patterning of poly(methyl methacrylate) (PMMA, e-beam resist) with Elionix

FLS-125 for channel layer lift-off.

� Reactive sputtering of WO3 layer from metallic target at room temperature in

O2/Ar RF plasma using AJA sputtering system (See Sec.2.7).

� Lifting off the WO3 layer in n-methyl pyrrolidone (NMP-Microposit 1165) fol-

lowed by annealing in 8 : 2 N2:O2 environment at 400 ∘C for 1 hour.

� Patterning of poly(methyl methacrylate) (PMMA, e-beam resist) with Elionix

FLS-125 for source/drain contact layer lift-off.

� Electron-beam evaporation of 35/ 5 nm of Au/Cr layer using AJA evaporation

system, followed by lift-off step in NMP.

� Plasma-Enhanced Chemical Vapor Deposition (PECVD) of PSG layer using

1420 sccm N2O, 12 sccm SiH4, and 12 sccm PH3 (2% in H2) at 100 ∘C, with a

RF plasma power of 60 W at 300 kHz.

� Patterning of poly(methyl methacrylate) (PMMA, e-beam resist) with Elionix

FLS-125 for gate contact layer lift-off.

� Electron-beam evaporation of 10 nm of Pd layer using AJA evaporation system,

followed by lift-off step in NMP.

� Reactive Ion Etching (RIE) of the PSG layer using Pd layer as the hard mask,

under CF4 plasma at 100 W.

� Patterning the bilayer of poly (methylglutarimide) and Microposit S1813 posi-

tive tone photoresist, using Heidelberg-MLA 150 for pad layer lift-off.

� Electron-beam evaporation of 150/15 nm of Au/Cr layer using AJA evaporation

system, followed by lift-off step in NMP.

5.1.5 Alternative Layouts for Protonic Devices

In addition to the device stacks described in Sec.2.4 and 2.8, coplanar structures

were also examined (Fig.5-3). These structures also employed a symmetric gate

stack where instead of a Pd reservoir, a second WO3 layer was used. In addition, the

coplanar layout shown here could also enable realizing nanoscale devices with Nafion,

which could be spun over the entire chip as the final step, and act as an electrolyte
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across the gap defined between two WO3 regions.
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Figure 5-3: Coplanar protonic devices with symmetric gate stack: (A) An
SEM image of a device design that employs two WO3 layers, one connected to the
gate terminals as the reservoir, and the other connected to the source-drain terminals
as the channel. Note that the long WO3 distance between the core of the device and
the metal contacts resulted in high access resistance (that cannot be modulated with
protonation). (B) An SEM image with a modified design using Au contacts to reduce
the aforementioned issue.

A symmetric stack as such may be beneficial by means of modulation symmetry.

Protonation of the WO3 layers were unsuccessfully attempted by heated H2SO4 treat-

ment, as in the absence of Pd, proton uptake of WO3 from forming gas is significantly

lowered. Note that ignoring alignment concerns, one can also realize coplanar devices

with asymmetric stack, utilizing Pd reservoir similar to the approach used in Chap.2.

5.1.6 Alternative Active Channel Materials

During the time of this thesis three main deposition methods were used: electron-

beam evaporation, reactive sputtering, and atomic layer deposition. In addition to

these three, a pulsed-laser deposition attempt was also made unsuccessfully. Following

the deposition, 4 major annealing options were used: no anneal, or 1 h anneal in 8 : 2

N2:)2 conditions at 300 ∘C, 400 ∘C, and 450 ∘C.

Electron-beam evaporated WO3 was found to be perfectly stoichiometric (as was

the target). However, during the photolithography-based fabrication, the poor step

coverage of the deposition method resulted in contact issues. On the other hand,

the ALD-deposited materials were found to be highly substoichiometric with low
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reproducibility. Although using O3 instead of H2O improved the oxygen content,

neither deposition method was found to be suitable for this application, due to high

base conductance and low modulation depth. Reactive sputtering based films have

the advantage of tunability, particularly by controlling the plasma power. Higher

powers reduce the time of flight of the W metal atom (from the target to the sample)

and thus yield a more oxygen deficient film. However, the reproducibility rate of the

material coming out of sputtering chamber was also found to be low.

In order to obtain the same result every time, the annealing step was used as an

equimorphising process. Given the oxygen ambient chosen for the annealing condi-

tions, materials were fully oxidized in the chamber, irrespective of their initial de-

ficiencies. Interestingly, it was observed that for initially (i.e. preanneal) oxygen

rich films, the crystallization occurred only above 450 ∘C, which is above the critical

BEOL-limit. On the other hand, substoichiometric films were successfully crystallized

at 400 ∘C, as well as being oxidized to the fullest during the annealing.

The materials that are oxygen rich and also amorphous were highly resistive and

not responsive to modulation pulses. For example, when a 70 W sputtering process

was used in combination with 400 ∘C annealing, since the initial film was oxygen-rich,

it did not crystallize at this temperature, and the resultant devices were simply too

resistive to measure. On the other hand, we were unable to generate an amorphous

material with a right stoichiometry that is not too conductive, which might be a future

direction to follow if there are additional benefits of amorphous materials compared

to polycrystalline ones.

In addition to WO3 and V2O5 based devices reported in Chap.2, trials were

conducted using MoO3, Nb2O5, and Ta2O5. These materials have been reported to

have desirable properties for ion-intercalation, however, a working flavor could not

be produced during the time of this thesis work, which might also be an interesting

direction for future studies.
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5.1.7 Field-Effect Related Volatile Conductance Changes

Careful analysis of the modulation dynamics (Fig.2-7C) unravels interesting device

physics, comprising of both volatile and non-volatile changes in conductance, as pro-

gramming pulses are applied. Under constant VDS =0.1 V, the source current, IS,

immediately steps up/down when a gate pulse (± 3 V) is applied and then smoothly

increases/decreases for the remainder of the pulse duration (colored dots). Once the

pulse disappears (i.e. floating gate), another sudden drop/rise in IS is observed. In

the absence of gate pulse, IS remains approximately constant, at a level different

from that before the application of the pulse, indicating nonvolatile programming of

the channel conductance (dark dots). These sudden changes in IS do not reflect an

increase in gate current, IG (<pA) but are due to a field-effect enhancement of the

channel conductance (∆GFE). This behavior can be explained by a field-effect increase

in the electron concentration and a resulting increase in conductance of the n-type

WO3 channel by the electrostatic field of protons driven within the electrolyte close

to the WO3 interface. Unlike the non-volatile, electrochemical intercalation-induced

conductance modulation (∆Gintercalation), this additional channel current only flows

during the application of a gate voltage pulse and so it is volatile.

5.1.8 Linear Regression Experiment

The protonic programmable resistors demonstrated in Chap.2 were tested in a single

parameter linear regression experiments, similar to those simulated in Fig.3-1. For

this test a dummy dataset was created with a mean corresponding to 0.4 µS with

a standard deviation 0.02µS. In this training-example, a conductance value was

selected at random from this dataset, and was compared to the device conductance

at that time. A single 5 ns programming pulse was then generated, with its polarity

determined by the relative positions of the channel conductance and the selected

datapoint. Fig.5-5 shows that experiments starting from either side of the optimum

value successfully converged to the optimum (i.e. mean of the dataset). Note that

once the device conductance enters the vicinity of the optimum (green shaded area),
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Figure 5-4: Field-effect related volatile conductance change [79]: (A) Detailed
picture of Fig.2-7A where the channel current, IS, is constantly recorded in the
presence (colored dots), and absence (dark dots) of gate pulses.(B)Intercalation and
(C) field-effect conductance modulation as a function of the pulse gate voltage for
different read drain-source voltage.

since some values are above the mean and others are below, the signal becomes a

mixture of increments-decrements. The device ability to keep a dynamic average

value equal to the target value (0.4 µS) indicates that the device programming was

accurate.
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Figure 5-5: Single-parameter linear regression experiment conducted on
a nanoscale protonic programmable resistor [86]. The protonic device with
𝑊 =150 nm, 𝐿 =75 nm , and 𝑑𝑃𝑆𝐺 =10 nm was programmed with voltage pulses of
±10 V and 5 ns. The dataset was artificially generated to be around 0.4µS with a
standard deviation of 0.02µS. For both initial points above and below this optimum
value, device conductance converged to the target region and remained in the vicinity
of this optimum, evidencing successful optimization.

5.1.9 Comparison of Retention Characteristics Under GND

and FLT Gate Conditions

In all characterizations provided in Chap.2, gate terminal was left floating during

readout, as was explained in Fig.2-2. In a real-scale implementation, this can be

achieved by a pass transistor can be added in series to the gate of each device, con-

trolled by a universal “Update-Enable” signal, blocking the electron current from the

channel into the reservoir. However, given that the channel resistance values are

in 𝑀Ω range, this might be high enough to grant sufficient leakage protection over

relevant timescales for analog deep learning accelerators. To test this hypothesis,

we compared the retention behavior of the devices under grounded and floating gate

configurations. Fig.5-6 shows no noticeable difference between the two different gate

biasing conditions, suggesting that a pass transistor may indeed not be necessary.

85



C
h

a
n

n
e
l 

C
o

n
d

u
ct

a
n

ce
 (
μ

S
)

Read Number

0

0.05

0.1

0.15

0.2

Floated Gate Readout

Grounded Gate Readout

W = 200 nm L = 100 nm

tpulse = 20 ns Vpulse = 10V

100 pulses/state

10 reads/state

Read every 10 s 

0 20 40 60

≈ 100 s
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10 V pulses are used to program the device to different states.No noticeable difference
was observed for two different gate biasing conditions.

5.2 Analog Computing Beyond Deep Learning

As mentioned in the beginning of this chapter, deep learning is not the only applica-

tion which can be implemented on analog architectures. Processes that involve high

volumes of matrix-matrix multiplication or rank-1 outer product can be significantly

accelerated with such processors, provided that the algorithm also doesn’t require

precise computation of any particular step.

(1) Power Iteration and Iterative Numerical Solvers

A most trivial use case for analog architectures is as multiply-accumulate (MAC) ma-

chines, performing rapid, fully-parallel inner products. This mode of operation can be

86



utilized for linear algebra algorithms based on power iteration, which require compu-

tation of the inner product of a given input, 𝑥, with the matrix, 𝐴, and its transpose,

𝐴𝑇 , to produce power series such as 𝐴𝑥,𝐴𝑥𝐴𝑇 , 𝐴2𝑥, etc. These operations also benefit

from storing 𝐴𝑇 for free (once the analog array is configured to represent 𝐴), thanks

to the bidirectional use of the crossbar array. Using this method, Neumann series

approximate inversion, quasi-Newton methods, Broyden–Fletcher–Goldfarb–Shanno

(BFGS) algorithm, top-k eigenvector decomposition, top-k singular value decompo-

sition, and Krylov subspace methods (e.g. generalized minimal residual method,

GMRES) can be achieved.

However, it must be noted that the matrix-matrix multiplication carried out on an

analog architecture suffers from nonidealities such as noise and device nonlinearity.

In order to mitigate these issues, one can first perform many fast and inaccurate

iterations on an analog processor, followed by few cycles of slower but accurate digital

post-processing (i.e. the analog processor acts as a preconditioner).

(2) Solving Linear Algebra Problems with Gradient Descent

Alternative to the iterative methods described above, many problems can also be

described as an optimization problem, similar to DNN training. For example, let’s

examine inversion of the matrix 𝐴. Initially a random square matrix, 𝐵, is instan-

tiated on an analog crossbar array that is of same size as 𝐴. Then, the rows of 𝐴

are presented to 𝐵 as input (for inner product), and the resultant output 𝑦𝑖 = 𝐴𝑖.𝐵

is compared to the respective column of the identity matrix, 𝐼𝑖. To exemplify, for

the first row, 𝐴1, the inner product is compared with 𝐼1 which is [1, 0, 0, ..., 0]. The

comparison, 𝑦𝑖−𝐼𝑖 is used to compute the error (i.e. between 𝐵 and 𝐴−1) and applied

to 𝐵 following a gradient descent formalism. Therefore, following sufficient steps, the

initially random matrix 𝐵 converges to 𝐴−1. The same idea can be extended to any

convex problem, where a known relation (e.g. 𝐴.𝐴−1 = 𝐼) can be used as a labeled

data for optimization, such as linear system solving and eigenvector decomposition.

Since this method employs a feedback loop, it is much more robust to noise un-

like the power iterations described above. However, to mitigate nonlinearity-caused
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degradations, digital post-processing methods such as Newton-Hotteling or digital-

SGD can be performed to improve the accuracy of analog results in few cycles [123].

(3) Implementing Randomized Algorithms

Arguably the most interesting and innovative method of the trio described here is to

utilize analog architectures is solving randomized algorithms [124]. These algorithms

are particularly useful in big-data scenarios to obtain an approximate solution where

matrix size too large to solve [125] or the complete matrix is not available at a given

time (e.g. real-time sensor readout) [126]. A well-known example of such algorithms is

randomized matrix sketching, that projects the original data onto a lower dimensional

subspace (i.e. the sketch), to obtain an approximate solution (e.g. to find the solution

of an overdetermined system of linear equations, See Ref. [127]).

Unlike the methods described above, the reason why randomized algorithms are

suitable for acceleration with analog architectures is not due to MAC operations

but parallel rank-1 outer products instead. For example, let’s assume the case for

streaming a data,= incoming in real time from 104 sensors over 106 time instances,

to a reduced dimension of 104 × 10. Then, a sketch matrix, 𝑆, of size 104 × 10 is

randomly instantiated on an analog crossbar array. For each input, 𝑥, of size 104× 1,

the matrix 𝑆 is rank-1 updated with 𝑥 and a random vector 𝑦 of size 1× 10. At the

end of 106 instance of data, the matrix 𝑆 represents a reduced dimension sketch of the

input system (to be used in further analysis, such as singular value decomposition,

instead of doing the same on the original 104 × 106 one). A detailed explanation of

this method, and how to mitigate asymmetry related degradations in this application

can be found in Ref. [128].
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