

Conflicting Requirements

L. Bernstein*, A. Sludds*, Sci Rep 2021

What Limits Edge Computing Today?

Modern digital hardware is limited by fetching weight data. Small edge ASICs consumes watts of power.

1) V. Sze: Efficient Processing of Deep Neural Networks 2) Google Edge TPU 3) Modified from "Survey and Benchmarking..." by Albert Reuther et al

Vision: Photonic Edge Computing

A Sludds, S Bandyopadhyay et al. Science 2022 (in press)

Client Energy and Bandwidth

Netcast Client Energy Consumption				
Device	Number	Fan-	Energy	Energy
	of Devices	out	per Device	per MAC
Modulator	1	N	$\sim 1 \text{ pJ}$	$\sim (1/N) \ { m pJ}$
DAC	1	N	$\sim 1 \text{ pJ}$	$\sim (1/N) \ {\rm pJ}$
ADC	1	M	$\sim 1 \mathrm{~pJ}$	$\sim (1/M) \text{ pJ}$
Integrator	N	M	$\sim 1~{ m fJ}$	$\sim (1/M) ~{ m fJ}$
Total	_	_	_	$\sim (1/N) ~{ m pJ}$

TeraMAC/s possible on client with single modulator

10fJ/MAC possible in near-term deployed systems

Experiment

Silicon Smart Transceiver

422mm² (half reticle) 48 carrier depletion modulators 50 Gbps each 2.4 Tbps total bandwidth Made in commercial CMOS foundry

QUANTUM

PHOTONICS.

Dataflow and Accuracy

Accurate computation with 86 km deployed fiber with 3 THz bandwidth

Time Integration Improves Sensitivity

PHOTONICS.

Fundamental Limits to Netcast

Summary

Demonstrated photonic edge computing

Using a 2.4 Tbps silicon smart transceiver

Made in a commercial CMOS foundry

8-bit accurate computing

Deployment over 86 km of real fiber

Using 3 THz of bandwidth

Time integrating receivers at ~10aJ/MAC

Capable of scaling to <1 photon per MAC

For TeraMAC/s computing on edge devices

A Sludds, S Bandyopadhyay et al. Science 2022 (in press)

Acknowledgements

Saumil Bandyopadhyay

Prof. Zaijun Chen Dr. Zhizhen Zhong

Liane Bernstein

Dr. Eric Bersin

Dr. Carlos **Frrando Herranz**

Dr. Darius Banundar

Dr. Matthew Streshinsky

Dr. Tom Baehr-Jones Dr. Euan Allen Dr. Ari Novack

Dr. Michael Hochberg

Dr. Mihika Prabhu

Prof. Manya Ghobadi

Dr. Ryan Hamerly

Funding + Support CREP () NTT SC NOKIA (

Slides Past This Point Are Supplemental

Time (A.U)

QUANTUM Photonics

📕 Рнотоліся,

