CMOS-Compatible

Ferroelectric Synapse Technology

for Analog Neural Networks

Jesús A. del Alamo, Yanjie Shao, Taekyong Kim, Elham R. Borujeny, and Dimitri A. Antoniadis

MIT

MIT AI Hardware Program Fall Research Update MIT, October 14, 2022

Deep Learning - Neural Networks

Computation using data representations with multiple levels of abstraction

Deep Neural Networks:

- Image recognition
- Speech recognition
- Natural language processing
- Machine translation
- Bioinformatics
- Drug design

. . .

Computing Performance needs of Al

\equiv WIRED

WILL KNIGHT BUSINESS JAN 21, 2020 7:00 AM

AI Can Do Great Things—if It Doesn't Burn the Planet

The computing power required for AI landmarks, such as recognizing images and defeating humans at Go, increased 300,000-fold from 2012 to 2018.

Analog Deep Neural Network

Multiply-Accumulate operation at heart of Matrix Multiplication

Law

's Ohm's Law

Programmable nonvolatile resistor

ANNs vs. Digital NNs:

- Footprint \downarrow
- Energy efficiency 个个
- Latency \downarrow

Key challenge: device with desired characteristics does not exist today!

Programmable Resistor based on Ferroelectric Effect

Ferroelectric material:

stores polarization charge due to unique crystal structure

Jerry, IEDM 2017

In thin-film with multi-domain structure: partial polarization switching \rightarrow analog behavior

Our approach: Non-Volatile Thin-Film Ferroelectric MOSFET

Critical requirement: Back-End CMOS compatibility

Last Spring:

High-quality HZO films and InGaZnO Transistors @ T≤400°C

Back-gate InGaZnO Thin-Film Transistor

- Ni back-gate lift-off
- Al₂O₃ ALD

- IGZO sputtering*
- 300°C annealing (air)*
- Mesa wet etch

- Source/drain lift-off
- Gate via etching
- Probe pad lift-off
- PMMA passivation

Transistor electrical characteristics

MIT IGZO by sputtering: first results

- InGaZnO target, with In:Ga:Zn = 1:1:1
- 20:1 Ar:O₂ flow rate during sputtering
- Linear deposition rate as confirmed from SEM (~0.43 Å/s)
- Device results not optimal, more optimization required

6

MIT HZO by PE-ALD: first results

HZO by 400°C RTA

- New Arradiance PE-ALD system at MIT
- Precursors: TDMAHf, TDMAZr and O₂ plasma
- Growth sequence: Hf-O-Zr-O
- Growth temperature: 250°C
- Growth rate: 2 Å/supercycle (as desired)
- FE formation temperature: 400, 500°C
- Optimization required

Summary of progress and future work

• Progress:

Well behaved back-gate CMOS-compatible IGZO field-effect transistors
Demonstration of ferroelectric HZO using PE-ALD at MIT.nano

• Future work:

≻Optimization of IGZO deposition at MIT.nano

≻Enhancement of ferroelectricity in HZO with low thermal budget

►Integration of ferroelectric HZO into IGZO transistors