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The “Cambrian explosion” of DNN hardware
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Google TPU

Nvidia Tesla K80
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DNNs are getting better because they are getting bigger

Scientific American
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The Guardian

Bernstein et al., 2021

DNN scaling is bottlenecked by energy consumption, which is ~1 pJ/OP for CMOS.



New DNN hardware is needed for ultra-low latency processing

Telecommunication

Self-driving cars
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Astronomy Particle physics

New applications require ultra-low latency (μs-ns) processing of (optical) data
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Astronomy Particle physics

New applications require ultra-low latency (μs-ns) processing of (optical) data 

This requires time-of-flight (clockless) compute on a single, integrated chip



An end-to-end optical DNN processor on a single chip
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An end-to-end optical DNN processor on a single chip

Linear matrix algebra performed 

optically on chip with passive 

interference
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An end-to-end optical DNN processor on a single chip

Linear matrix algebra performed 

optically on chip with passive 

interference

Nonlinear functions 

implemented 

optically at fJ/NLOP
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Application-specific photonic integrated circuit
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Quantum Photonics Group

Coherent matrix multiplication unit
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Programmable meshes of Mach-Zehnder interferometers 

compute linear algebra through passive optical interference
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Programmable meshes of Mach-Zehnder interferometers 

compute linear algebra through passive optical interference
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optical 
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>13 bits of 
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inputs



Quantum Photonics Group

Nonlinear optical function unit

No amplifier!
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Quantum Photonics Group

Nonlinear optical function unit
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Coherent optical nonlinear functions without digitization or amplification

No amplifier!



Quantum Photonics Group

Model training benefits from optical acceleration

Model training also requires repeated forward inference.

Preprint manuscript available at https://arxiv.org/abs/2208.01623 15



Quantum Photonics Group

Model training benefits from optical acceleration

Model training also requires repeated forward inference.
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Optically acceleration can enable low-latency model training.



In situ training on optical hardware

Forward inference is optically accelerated during in situ training, which 

achieves the same accuracy as a digitally trained system.
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Summary

Preprint manuscript available at https://arxiv.org/abs/2208.01623 18

• Single-shot optical inference in a deep neural network on a photonic chip with 

time-of-flight (500 ps) limited latency
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•

• Single-shot optical inference in a deep neural network on a photonic chip with 

time-of-flight (500 ps) limited latency

All-optical processing of data without digitization between layers, eliminating the 

latency introduced by optical-to-electronic conversion

•

•

Coherent matrix multiplication in the optical domain

Coherent optical nonlinear functions without electronic amplification

•

•

Entirely fabricated in a commercial foundry

In situ training takes advantage of near-instantaneous inference, reducing latency 

and power consumption of model training.
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