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Self Introduction



Overview

qMotivation: Side-channel Security Concerns for 

Embedded Neural Network implementations.

qHardware Defenses.

qEvaluation Results and Comparison. 



Security Concerns in Machine Learning

Opportunities:
• New notions of security in embedded ML 
• Need for Secure Implementation by Design !

Security Concerns in Embedded ML:
• ML models can be intellectual property
• Models leak training data
• Easier adversarial attacks
• Privacy concerns for user data

Embedded Machine Learning:
• Sensors collect private data and locally 

process them using ML models
• Data used for both training and diagnosis
• Fitness trackers, Health monitors, …



Side-Channel Attacks (SCA)

• Information leakage through:
• Timing
• Power consumption
• EM emanations

• Traditionally used to attack     
cryptographic algorithms.

• Side channels leak critical
information in embedded ML

Objectives:
• Evaluation of side-channel leakages from
embedded NN / ML implementations

• Side-channel countermeasures

Timing 
side-channel

Electromagnetic 
side-channel

Power 
side-channel



SCA on Embedded Neural Networks

Attacking Embedded Neural Networks:
• Exploits the timing and coarse-grained power information.
• Applicable to different precision networks: floating-point,

fixed-point, binary networks.
• Platforms: AT328P, Cortex-M0+, RISC-V.

Defending Embedded Neural Networks:
• Purely software-based countermeasures have power and 

performance overheads due to architectural limitations
• Motivates the need for side-channel resistant hardware for 

optimal solutions

Reference: S. Maji, U. Banerjee and A. P. Chandrakasan, "Leaky Nets: Recovering
Embedded Neural Network Models and Inputs Through Simple Power and Timing Side-
Channels—Attacks and Defenses," in IEEE Internet of Things Journal, 2021.
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Defense Methodology: 
Threshold Implementation-based Design
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a1, a2 and a3 are the 3 shares of a.

Boolean Masking: The data
to be protected is split into
random shares mask.
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Threshold Implementation
(TI): A Boolean-masking
based Computation scheme.

q Provides provable against side-
channel attacks.

q Operates over Boolean-shared
inputs and generates Boolean-
shared outputs. Threshold-based AND Computation

Reference: S. Nikova et. al, “Threshold Implementations Against Side-Channel Attacks and
Glitches,” Information and Communications Security (ICICS), 2006.



Threshold Implementation: Challenges
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TI-based AND design using traditional gates

Challenges:
q Huge area & energy overheads.
q Huge increase in cycle latency.
q Requirement of fresh random bits.
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Side-Channel Secure Neural Network 
Accelerator Design

Salient Features:
Side-channel secure model decryption unit.1

2 TI-based Neural Network operation for protecting
both the model parameters and the inputs.
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Side-Channel Leakage Evaluation Results

Test Vector Leakage Assessment (TVLA) Test:



Comparison Results

Metric HOST’20 [1] ICCAD’20 [2] CICC’19 [3] This work
Platform FPGA FPGA ASIC (55nm) ASIC (28nm)

Defense Techniques Arithmetic
Masking

Boolean
Masking

Homomorphic 
Enc./Dec.

Boolean
Masking

Supply Voltage (V) - - 0.4 0.60 - 0.95

Frequency (MHz) 24 24 60 10 - 125

Latency Overhead a 2x 101x - 1.4x 

Energy / opn. - - 50.63 nJ/op. b

13.11 nJ/op. 

2.1 pJ/op. (Traditional) c

11.5 pJ/op. (Secure)

Area Overhead 2.3x d 5.9x d - 1.64x e

Configurability No (MNIST) No (MNIST) - Yes (MLP / 1D-CNN)

Model Details Binarized Binarized - Multibit

SCA Evaluation CPA (>0.1M) TVLA (>2M) - CPA , TVLA  (>2M)

RNG Source PRNG Trivium
(Traditional design) - Trivium 

(TI-based design)

Weights Encryption No No Yes Yes (Trivium Cipher)
b Energy reported for Enc and Dec. operations, respectively.

d [4] and [5] reported the area overheads for the LUT and FF units.
e Our design has reported the overall area overhead (includes both the logic area and SRAM size increase).

a Calculated for 50 MAC operations.
c Energy reported per MAC operations (averaged over 50 MAC operations).



Conclusion

qSide-channel Security concerns of Embedded Neural Networks

implementations.

qDefense Technique – Threshold Implementation

qSide-channel evaluation results

Reference: S. Maji, U. Banerjee, S. H. Fuller, and A. P. Chandrakasan,
"ShieldNN: A Threshold Implementation-based Neural Network Accelerator
Securing Model Parameters and Inputs against Power Side-Channel Attacks," in
IEEE ISSCC, 2022.
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