Attacking & Defending Embedded Neural Network Implementations against Power Side-Channel Attacks

Saurav Maji Advisor: Prof. Anantha P. Chandrakasan

- B.Tech. in Electronics & Electrical Communication Engineering, IIT Kharagpur, India (2017)
- S.M. in Electrical Engineering & Computer Science, MIT, 2019
- Currently working towards Ph.D. in MIT under Prof. Anantha P. Chandrakasan
- Interests: Hardware Security, Machine Learning Hardware, Biomedical Systems

 Motivation: Side-channel Security Concerns for Embedded Neural Network implementations.
Hardware Defenses.

Evaluation Results and Comparison.

Security Concerns in Machine Learning

Opportunities:

Embedded Machine Learning:

- Sensors collect private data and locally process them using ML models
- Data used for both training and diagnosis
- Fitness trackers, Health monitors, …

Security Concerns in Embedded ML:

- ML models can be intellectual property
- Models leak training data
- Easier adversarial attacks
- Privacy concerns for user data
 - New notions of security in embedded ML
 - Need for <u>Secure Implementation by Design</u> !

Side-Channel Attacks (SCA)

- Information leakage through:
 - Timing
 - Power consumption
 - EM emanations
- Traditionally used to attack cryptographic algorithms.
- Side channels leak critical information in embedded ML

Objectives:

- Evaluation of side-channel leakages from embedded NN / ML implementations
- Side-channel countermeasures

Attacking Embedded Neural Networks:

- Exploits the timing and coarse-grained power information.
- Applicable to different precision networks: floating-point, fixed-point, binary networks.
- Platforms: AT328P, Cortex-M0+, RISC-V.

Defending Embedded Neural Networks:

- Purely software-based countermeasures have <u>power and</u> <u>performance overheads</u> due to architectural limitations
- Motivates the need for <u>side-channel resistant hardware</u> for optimal solutions

Reference: S. Maji, U. Banerjee and A. P. Chandrakasan, "Leaky Nets: Recovering Embedded Neural Network Models and Inputs Through Simple Power and Timing Side-Channels—Attacks and Defenses," in *IEEE Internet of Things Journal*, 2021.

Output in the second security of the security of the second security of the security of the second security of the second sec

Embedded Neural Network implementations.

□Hardware Defenses.

Evaluation Results and Comparison.

Defense Methodology: Threshold Implementation-based Design

Boolean Masking: The data to be protected is split into random shares mask.

$$a \xrightarrow{-- \Rightarrow} a^{1}$$

 $a \xrightarrow{-- \Rightarrow} a^{2} a = a^{1} \oplus a^{2} \oplus a^{3}$
 a^{1} , a^{2} and a^{3} are the 3 shares of a .

ThresholdImplementation(TI):ABoolean-maskingbasedComputation scheme.

- Provides provable against sidechannel attacks.
- Operates over Boolean-shared inputs and generates Booleanshared outputs.

Reference: S. Nikova et. al, "Threshold Implementations Against Side-Channel Attacks and Glitches," *Information and Communications Security (ICICS),* 2006.

Threshold Implementation: Challenges

Challenges:

- □ Huge area & energy overheads.
- □ Huge increase in cycle latency.
- Requirement of fresh random bits.

Side-Channel Secure Neural Network Accelerator Design

Salient Features:

- Side-channel secure model decryption unit.
- 2 TI-based Neural Network operation for protecting both the model parameters and the inputs.

Overview

□ Motivation: Side-channel Security Concerns for

Embedded Neural Network implementations.

Hardware Defenses.

Evaluation Results and Comparison.

Side-Channel Leakage Evaluation Results

Comparison Results

Metric	HOST'20 [1]	ICCAD'20 [2]	CICC'19 [3]	This work
Platform	FPGA	FPGA	ASIC (55nm)	ASIC (28nm)
Defense Techniques	Arithmetic Masking	Boolean Masking	Homomorphic Enc./Dec.	Boolean Masking
Supply Voltage (V)	-	-	0.4	0.60 - 0.95
Frequency (MHz)	24	24	60	10 - 125
Latency Overhead ^a	2x	101x	-	1.4x
Energy / opn.	-	-	50.63 nJ/op. ^b 13.11 nJ/op.	2.1 pJ/op. (Traditional) ^C 11.5 pJ/op. (Secure)
Area Overhead	2.3x ^d	5.9x ^d	-	1.64x ^e
Configurability	No (MNIST)	No (MNIST)	-	Yes (MLP / 1D-CNN)
Model Details	Binarized	Binarized	-	Multibit
SCA Evaluation	CPA (>0.1M)	TVLA (>2M)	-	CPA , TVLA (>2M)
RNG Source	PRNG	Trivium (Traditional design)	-	Trivium (TI-based design)
Weights Encryption	No	No	Yes	Yes (Trivium Cipher)

^a Calculated for 50 MAC operations. ^b Energy reported for Enc and Dec. operations, respectively.

^C Energy reported per MAC operations (averaged over 50 MAC operations).

^d [4] and [5] reported the area overheads for the LUT and FF units.

^e Our design has reported the overall area overhead (includes both the logic area and SRAM size increase).

- □ Side-channel Security concerns of Embedded Neural Networks implementations.
- Defense Technique Threshold Implementation
- □ Side-channel evaluation results

Reference: S. Maji, U. Banerjee, S. H. Fuller, and A. P. Chandrakasan, "ShieldNN: A Threshold Implementation-based Neural Network Accelerator Securing Model Parameters and Inputs against Power Side-Channel Attacks," in *IEEE ISSCC*, 2022.

References

[1] A. Dubey, et al., "MaskedNet: The First Hardware Inference Engine Aiming Power Side-Channel Protection," *IEEE HOST*, 2020.

[2] A. Dubey, et al., "BoMaNet: Boolean Masking of an Entire Neural Network," *IEEE/ACM ICCAD*, 2020.

[3] I. Yoon, et al., "A 55nm 50nJ/encode 13nJ/decode Homomorphic Encryption Crypto-Engine for IoT Nodes to Enable Secure Computation on Encrypted Data," *IEEE CICC*, 2019.

Collaborators:

- Utsav Banerjee
- Samuel H. Fuller

Acknowledgements:

- □ Funding Support: Analog Devices Inc.
- Chip Fabrication Support: TSMC University Shuttle Program
- Alex Ji, Maitreyi Ashok, Miaorong Wang and Kyungmi Lee for helpful technical discussions.