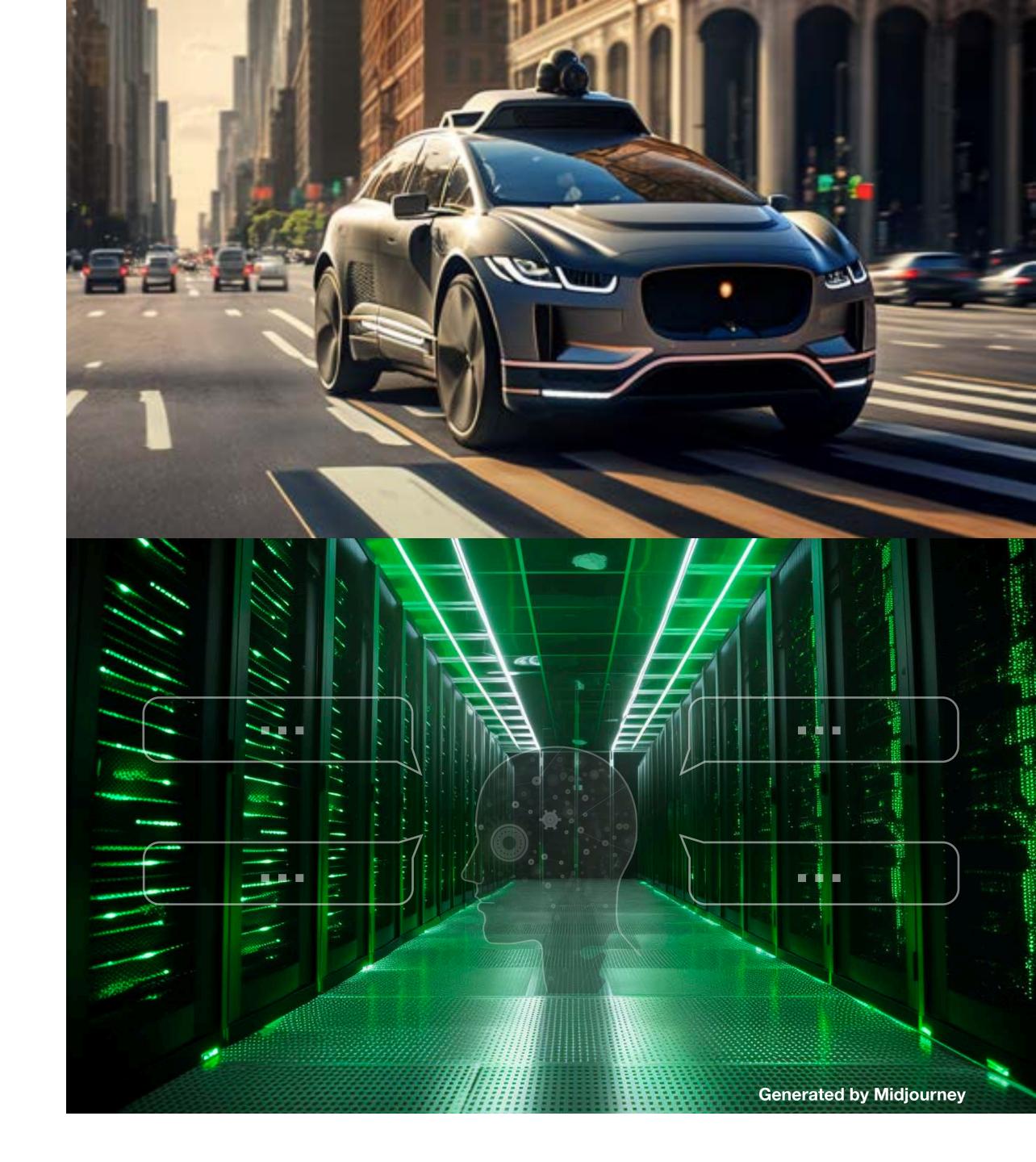


Hardware, AI, and Neural-nets open source, co-design http://github.com/mit-han-lab

Model Compression for Efficient Al Computing

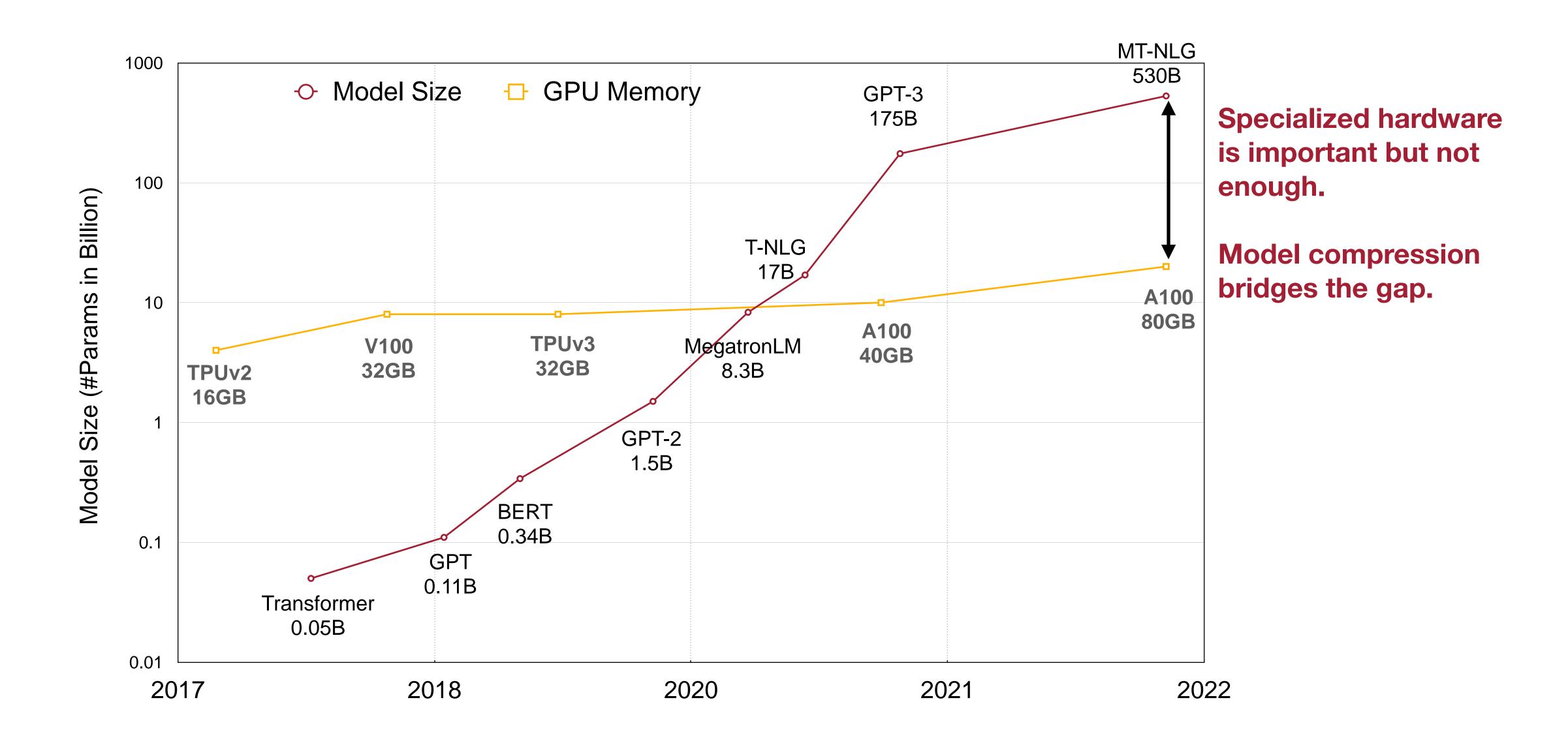
From TinyML to LargeML

Song Han
MIT
songhan.mit.edu
tinyml.mit.edu



Model Compression

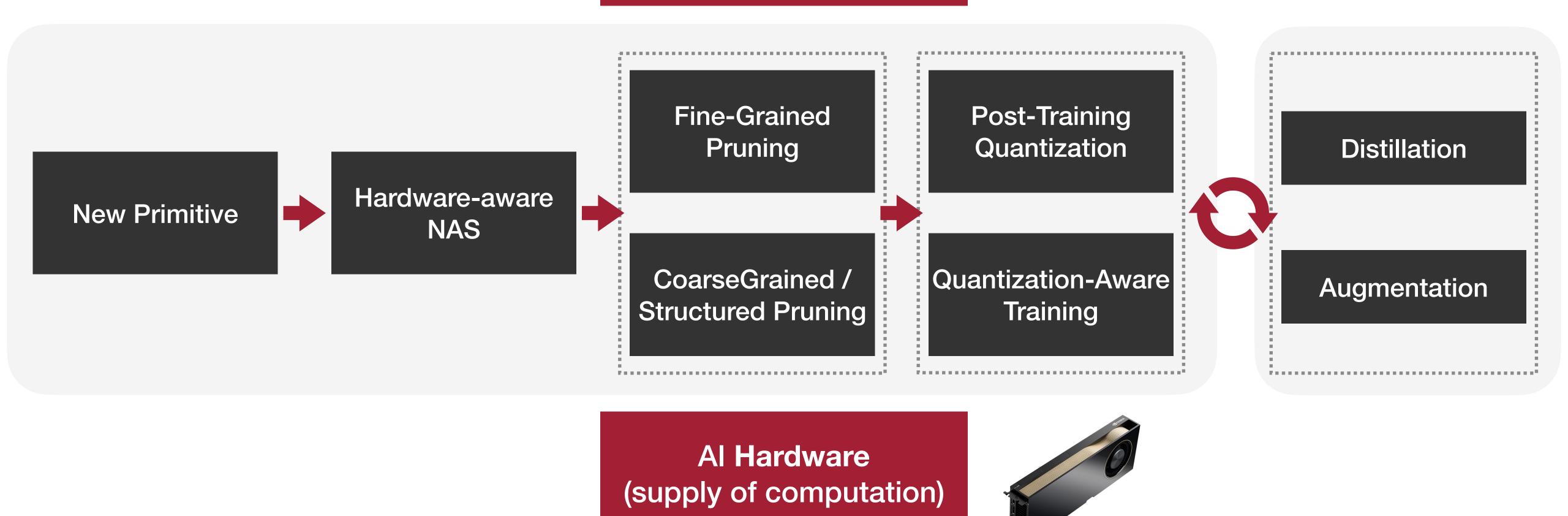
Bridges the Gap between the Supply and Demand of Computation



Model Compression

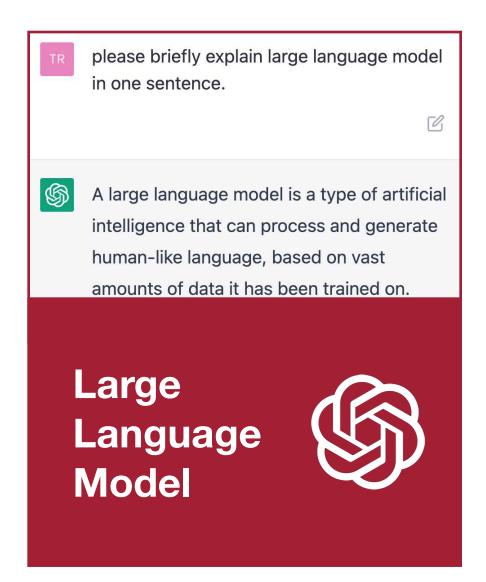
Bridges the Gap between the Supply and Demand of Computation

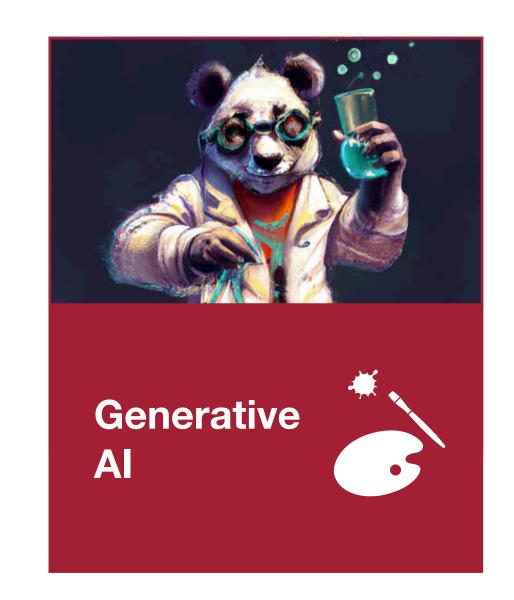
Al Application (demand of computation)

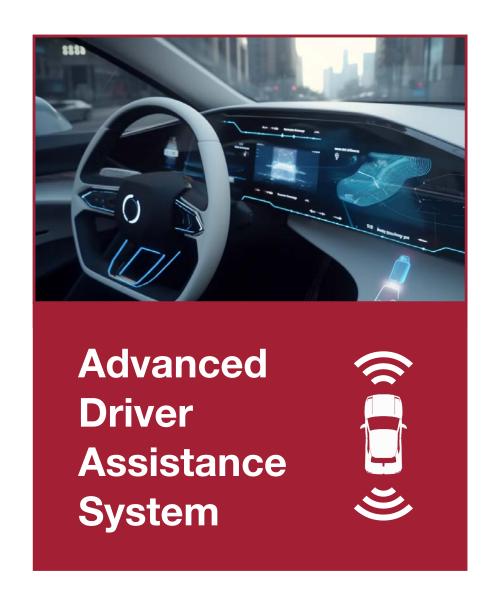


Model Compression

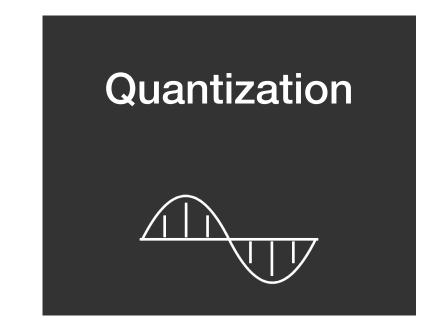
Applications





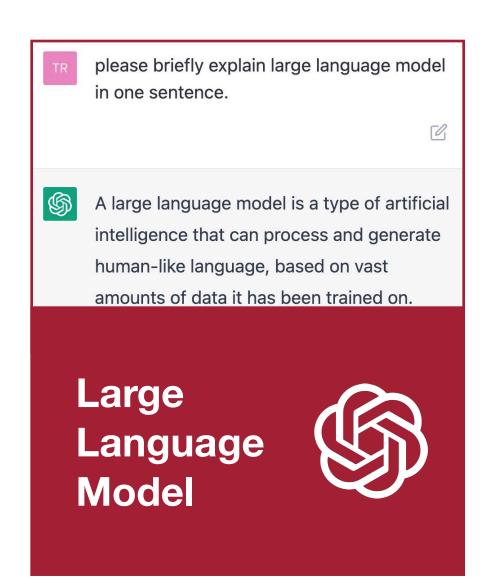


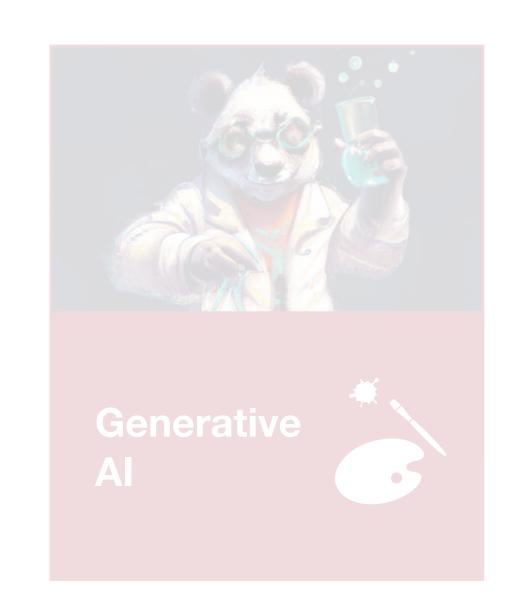
Techniques



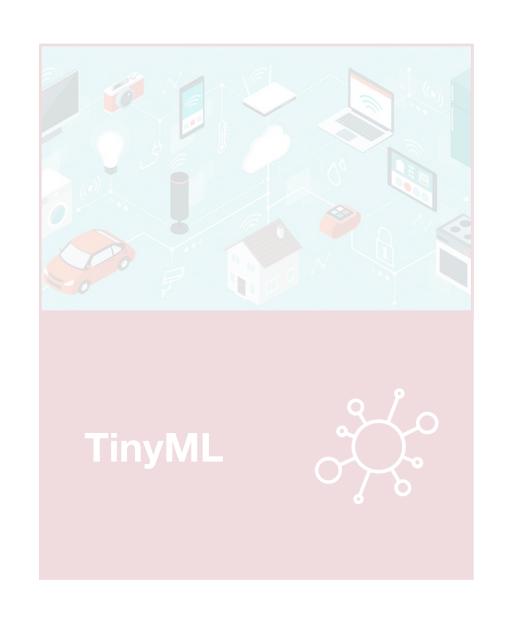
Same Principle, Diverse Applications

Applications

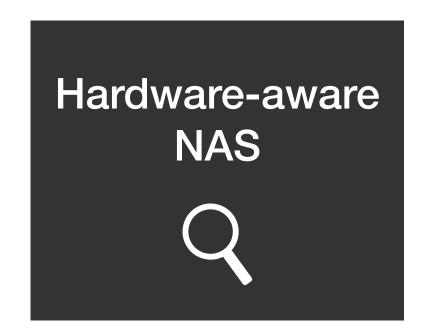


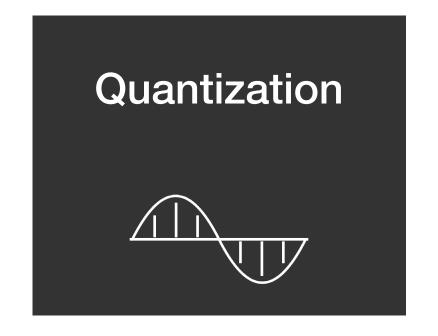






Techniques





Efficient Large Language Models

Reducing LLM Serving Cost and Accelerating Inference

We're experiencing exceptionally high demand. Please hang tight as we work on scaling our systems. X

ChatGPT is at capacity right now

Get notified when we're back

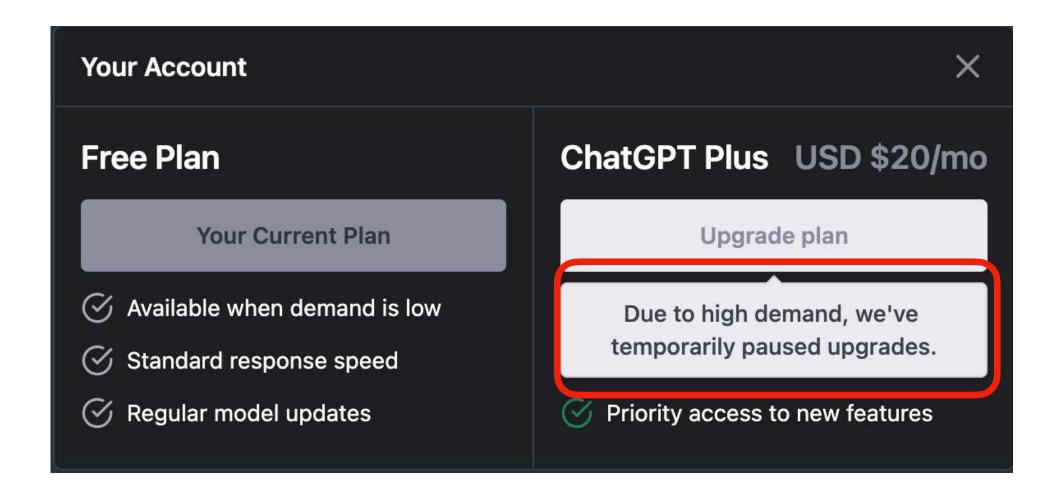
Write a rap about the status of ChatGPT.

Yeah, yo, what's up ChatGPT fam
A lot of people trying to jam
But don't worry, we got your back
Just check back soon, we'll get on track

ChatGPT's the place to be
For all your AI chat needs
We're working hard to keep up the pace
So hold tight, we'll be back in this space

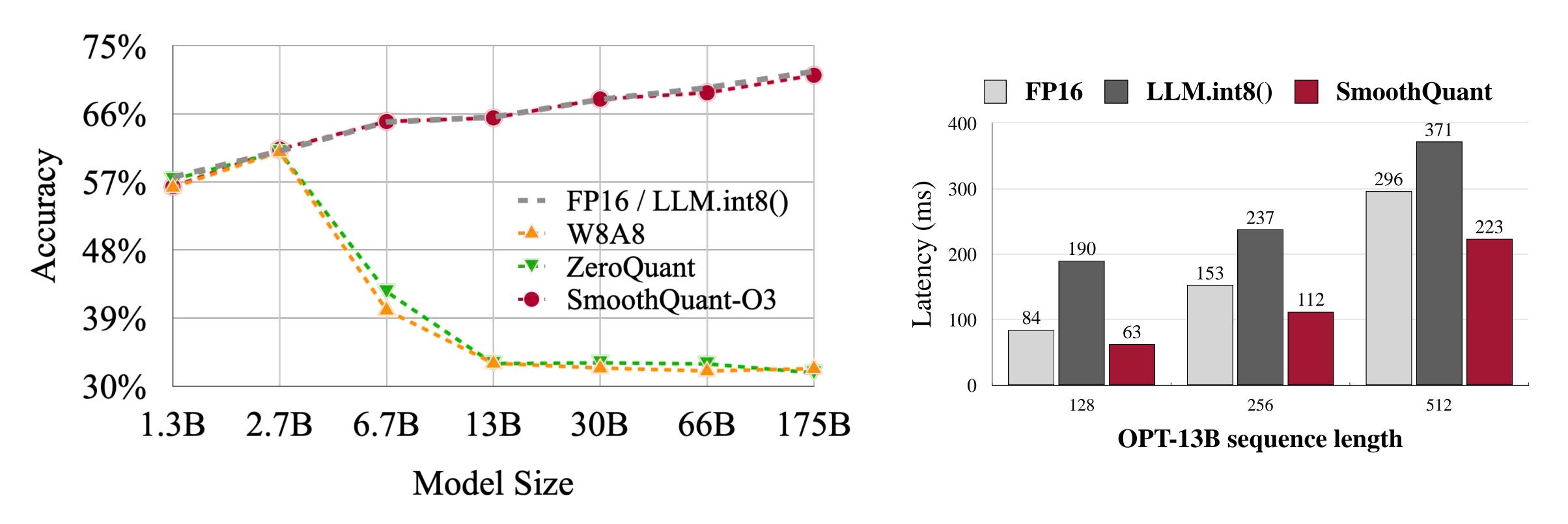
So don't you worry, don't be mad We're working hard, it's not so bad Just give us time, we'll be back ChatGPT, the future of chat, that's a fact.

The LLM serving costs are extremely high



Quantization cut the model size by half, but...

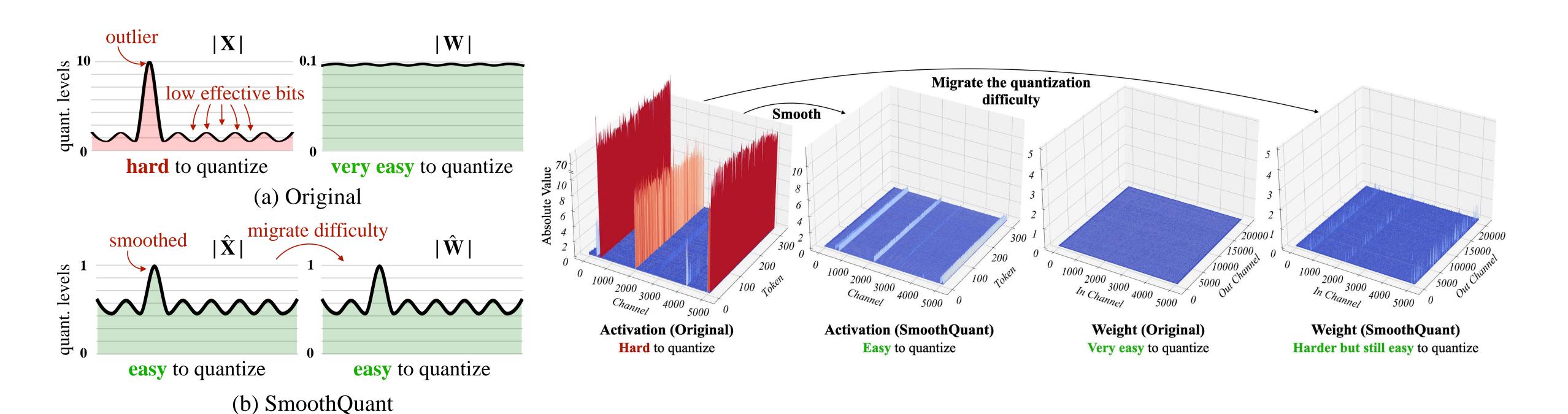
Existing Quantization Method is Slow or Inaccurate



- Systematic outliers emerge in activations when we scale up LLMs beyond 6.7B. Traditional CNN quantization methods will destroy the accuracy.
- The accuracy-preserving baseline, LLM.int8() uses FP16 to represent outliers, which needs runtime outlier detection, scattering and gathering. It is slower than FP16 inference.

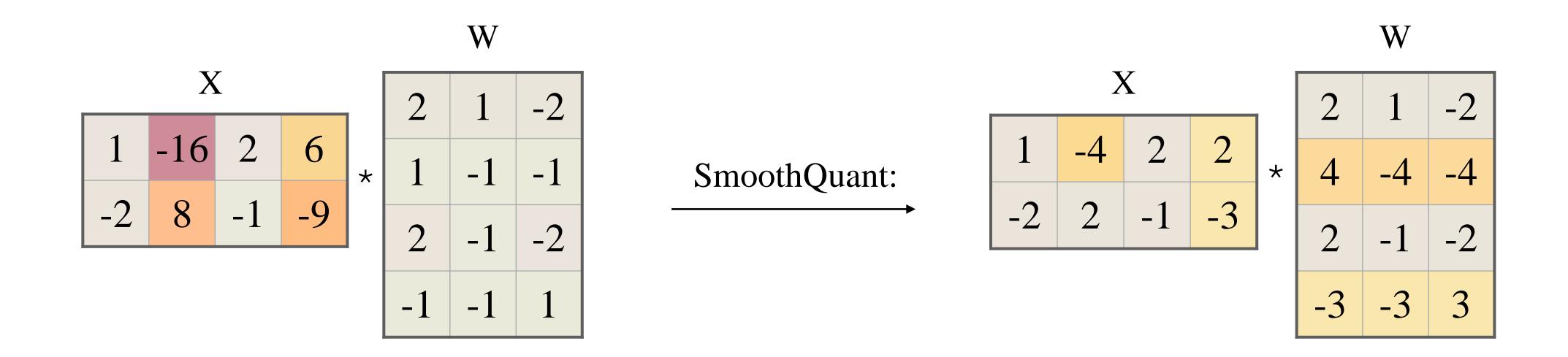
LLM.int8(): 8-bit Matrix Multiplication for Transformers at Scale (Dettmers et al., 2022)

Lots of outliers; Migrate Quantization Difficulty from Activations to Weights



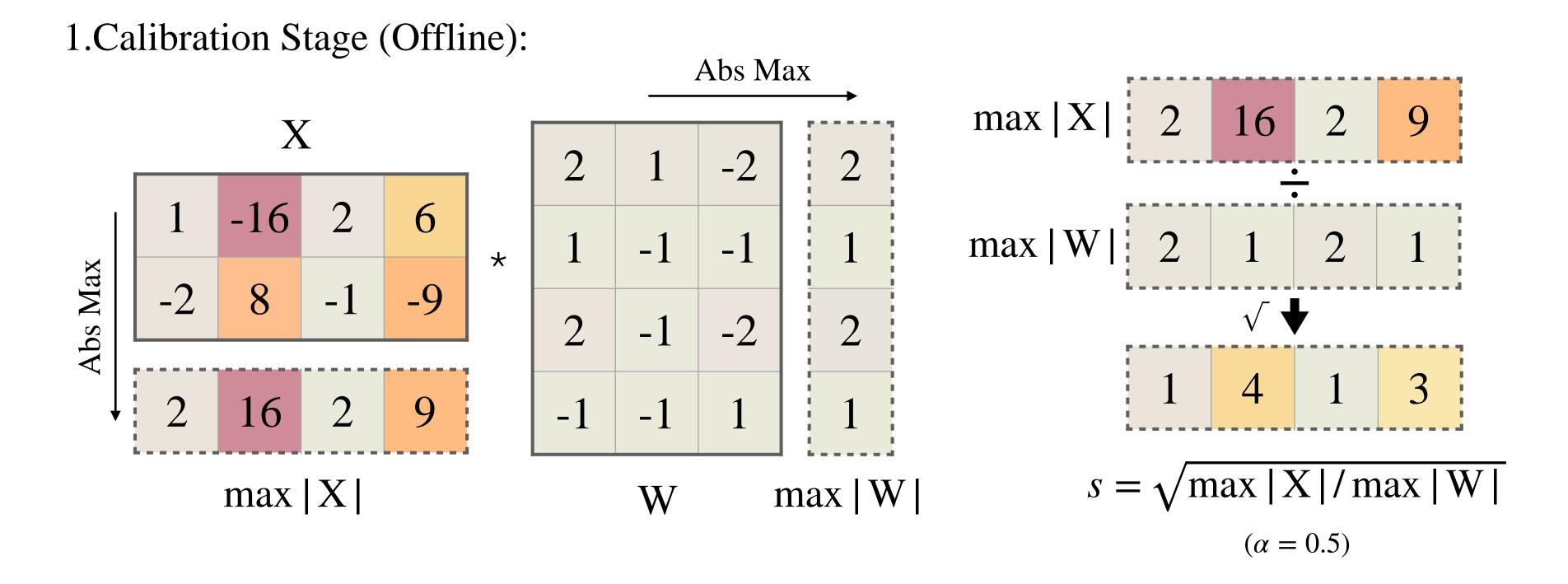
- Since matrix multiplication, A*B=C, is linear, we can shift information in A or B around. As such, we can balance the quantization difficulty across A and B.
- Since weights are easy to quantize while activations are not, SmoothQuant smooths the activation outliers by migrating the quantization difficulty from activations to weights with a mathematically equivalent transformation.

Training-free, Offline Activation Smoothing



- Since matrix multiplication, A*B=C, is linear, we can shift information in A or B around.
- SmoothQuant smooths the activation outliers by migrating the quantization difficulty from activations to weights with a mathematically equivalent transformation.

Training-free, Offline Activation Smoothing



$$\mathbf{s}_j = \max(\|\mathbf{X}_j\|)^{\alpha}/\max(\|\mathbf{W}_j\|)^{1-\alpha}, \ j=1,2,\dots,C_i$$

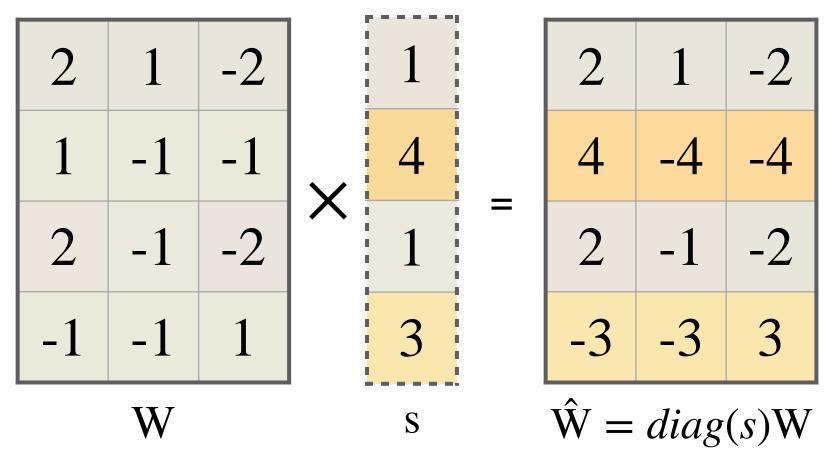
$$\alpha: \text{Migration Strength}$$

SmoothQuant: Accurate and Efficient Post-Training Quantization for Large Language Models (Xiao et al., 2022)

Training-free, Offline Activation Smoothing

2. Smoothing Stage (Offline):

multiply the input channel of the following weight by s



$$\mathbf{s}_{j} = \max(|\mathbf{X}_{j}|)^{\alpha}/\max(|\mathbf{W}_{j}|)^{1-\alpha}, j = 1, 2, ..., C_{i}$$

$$\mathbf{Y} = (\mathbf{X}diag(\mathbf{s})^{-1}) \cdot (diag(\mathbf{s})\mathbf{W}) = \hat{\mathbf{X}}\hat{\mathbf{W}}$$

-1

 α : Migration Strength

Training-free, Offline Activation Smoothing

3. Inference (deployed model):

Ŷ						
1 -4 2 2						
-2	2	-1	-3			

At runtime, the activations are smooth and easy to quantize

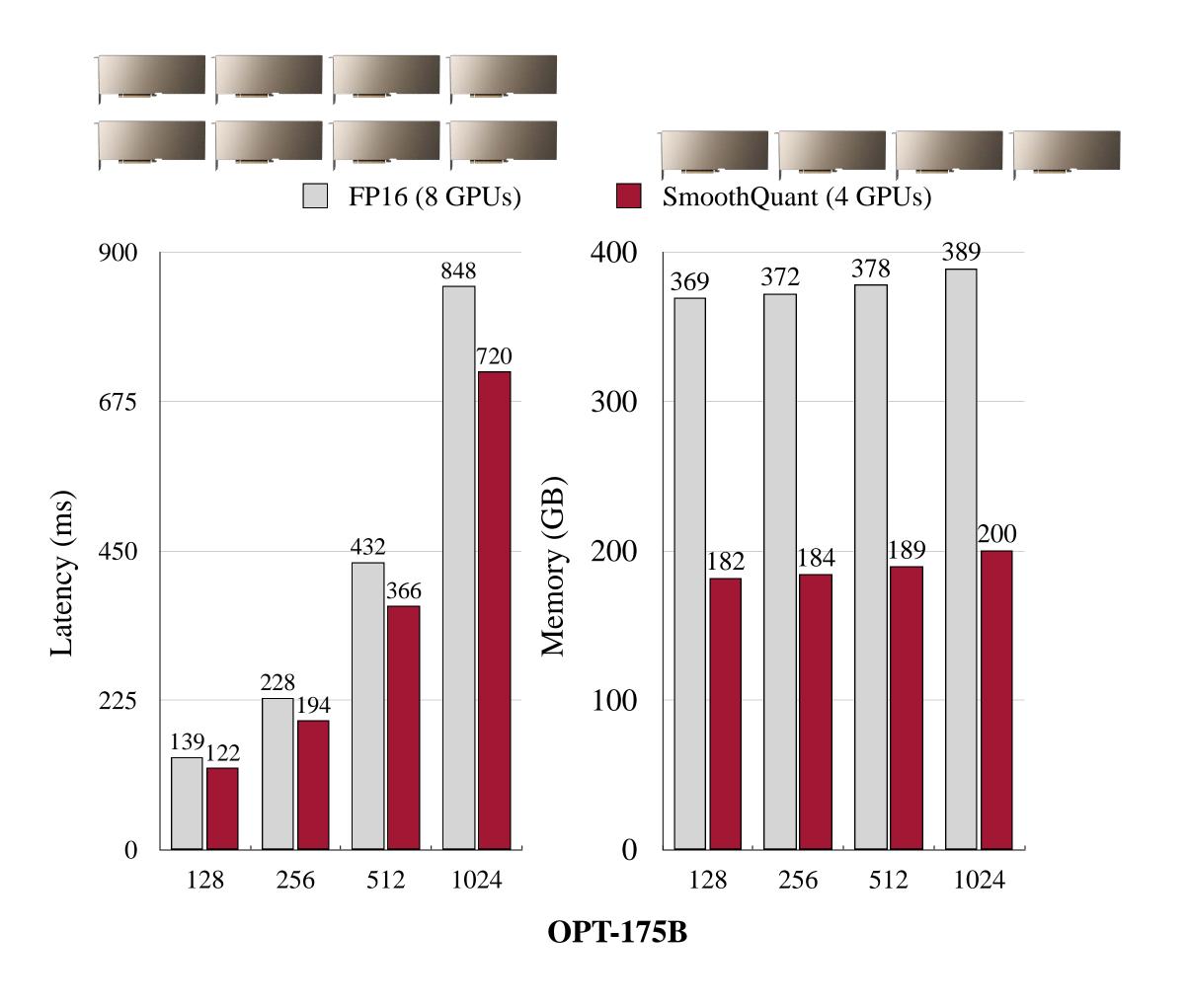
2	1	-2
4	-4	-4
2	-1	-2
-3	-3	3
	ŵ	

$$Y = \hat{X}\hat{W}$$

*

SmoothQuant is Accurate and Efficient

Method	OPT-175B	BLOOM-176B	3 GLM-130B*
FP16	71.6%	68.2%	73.8%
W8A8 ZeroQuant LLM.int8() Outlier Suppression	32.3%	64.2%	26.9%
	31.7%	67.4%	26.7%
	71.4%	68.0%	73.8%
	31.7%	54.1%	63.5%
SmoothQuant-O1	71.2%	68.3%	73.7%
SmoothQuant-O2	71.1%	68.4%	72.5%
SmoothQuant-O3	71.1%	67.4%	72.8%



- SmoothQuant well maintains the accuracy without finetuning.
- SmoothQuant can both accelerate inference and halve the memory footprint.

Enabling Serving the MT-NLG 530B Model within a Single Node

MT-NLG 530B Accuracy

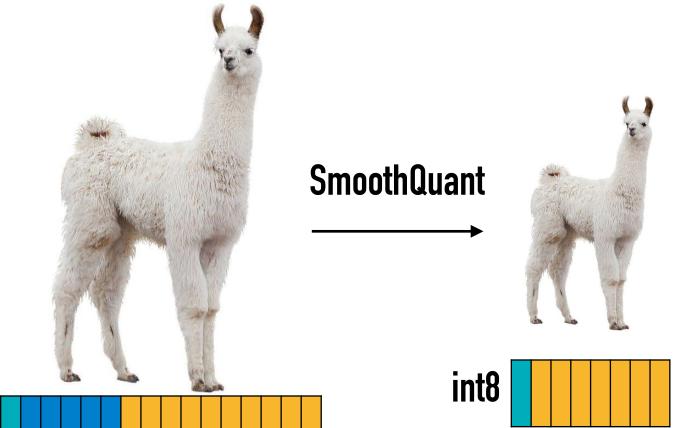
	LAMBADA	HellaSwag	PIQA	WinoGrande	Average
FP16	76.6%	62.1%	81.0%	72.9%	73.1%
INT8	77.2%	60.4%	80.7%	74.1%	73.1%

MT-NLG 530B Efficiency

SeqLen	Prec.	#GPUs	Latency	Memory	
512	FP16 INT8	16	838ms 839ms	1068GB 545GB	
1024	FP16 INT8	16 8	1707ms 1689ms	1095GB 570GB	

SmoothQuant can accurately quantize MT-NLG 530B model and reduce the serving GPU numbers by half at a similar latency, which allows serving the 530B model within a single node.

Advancing new efficient open model LLaMA

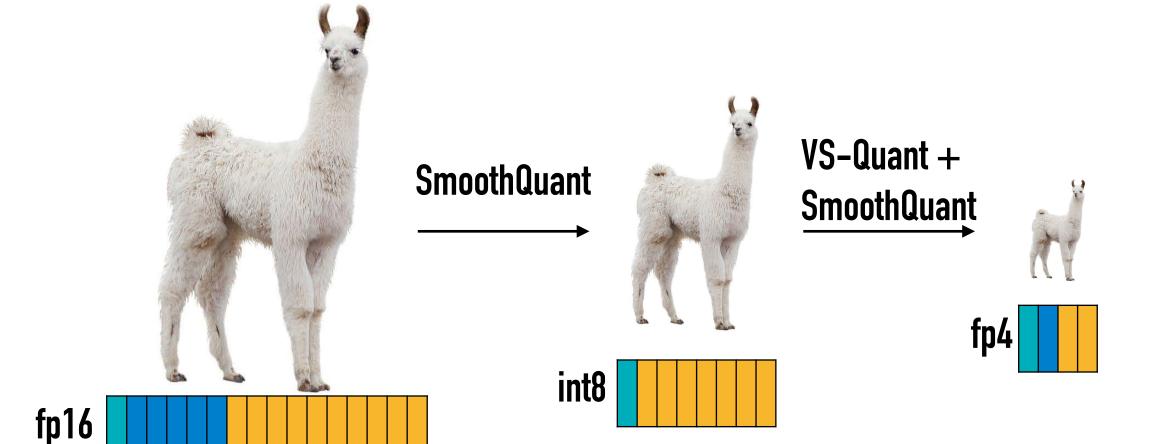


- **LLaMA** (and its successors like Alpaca) are popular ^{TP10} **HILLING** open-source LLMs, which introduced SwishGLU, making activation quantization even harder
- SmoothQuant can losslessly quantize LLaMA families, further lowering the hardware barrier

PIQAT	LLaMA 7B	LLaMA 13B	LLaMA 30B	LLaMA 65B
FP16	78.24%	79.05%	80.96%	81.72%
SmoothQuant	78.24%	78.84%	80.74%	81.50%

Wikitext↓	LLaMA 7B	LLaMA 13B	LLaMA 30B	LLaMA 65B
FP16	11.51	10.05	7.53	6.17
SmoothQuant	11.69	10.31	7.71	6.68

Going smaller: W4A4 (FP4)

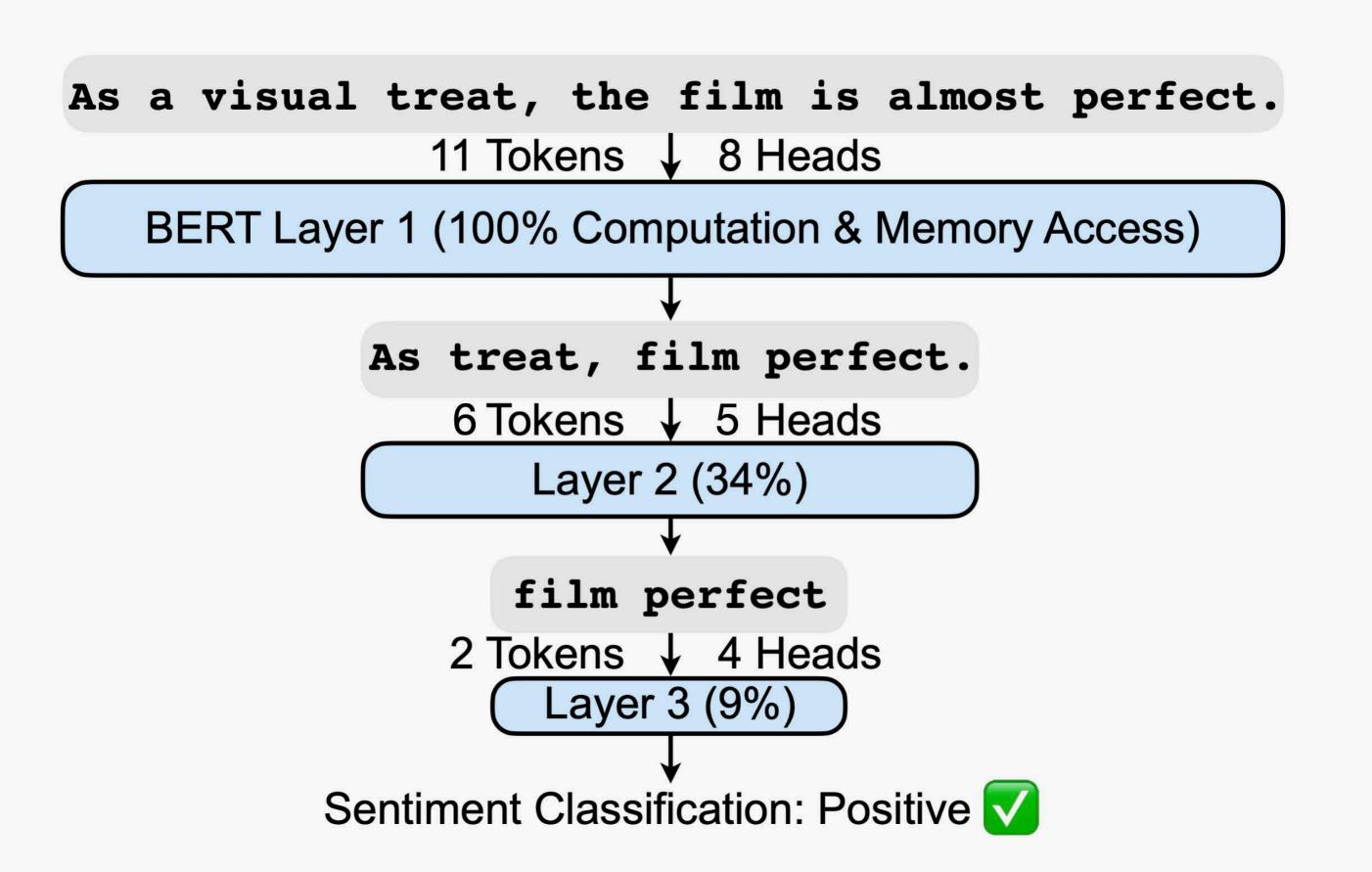


- Can we further push the frontier?
- We evaluate the W4A4 quantization for future-generation of hardware
 - Setting: FP4 data type with a block size of 64
- Red: ppl degrade > 0.5, Green: ppl degrade < 0.5. SmoothQuant helps most of the time.

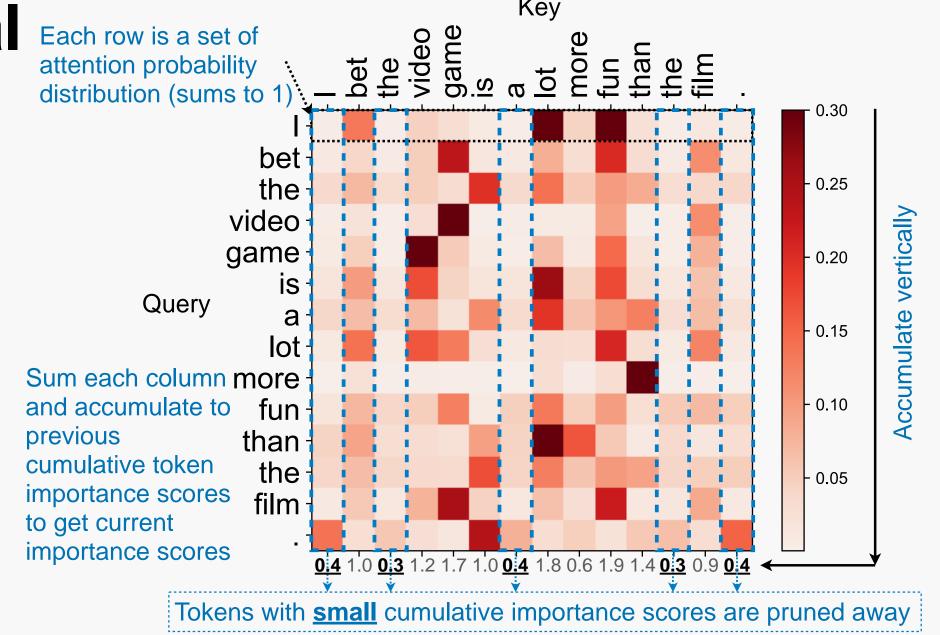
wikitext2	llama-7b	llama-30b	llama-65b
fp16	9.49	6.91	4.96
w4a4-m1e2-g64	10.2676	8.1453	5.4746
w4a4-m1e2-g64(sm0.25	10.1437	7.0089	5.4336
	opt-6.7b	opt-13b	opt-30b
fp16	15.12	14.13	13.09
w/10/ m102 a6/	16.2289	14.7355	13.6172
w4a4-m1e2-g64	10.2200	1 000	10000 101 TO

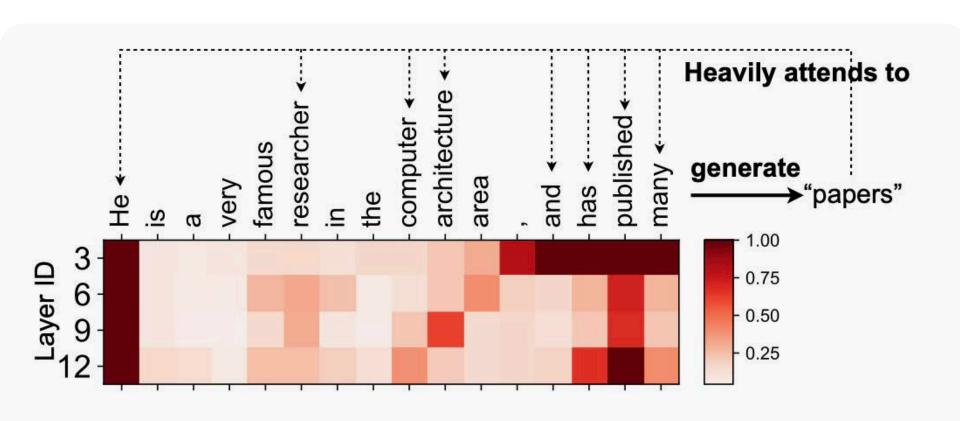
SpAtten: Transformer with Sparse Attention

Token Pruning: not every token are created equal



Remove redundant token and head according to cumulative importance

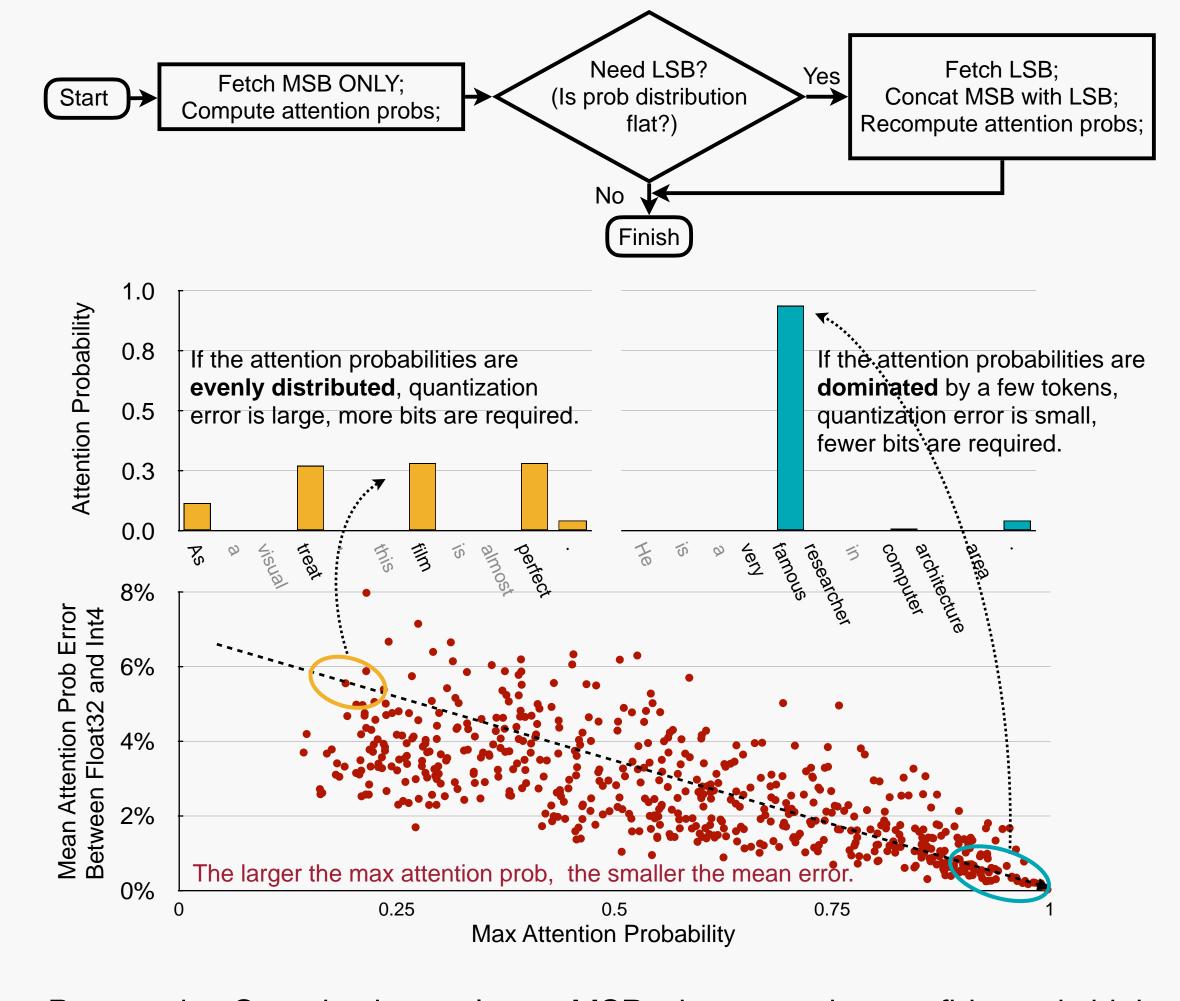




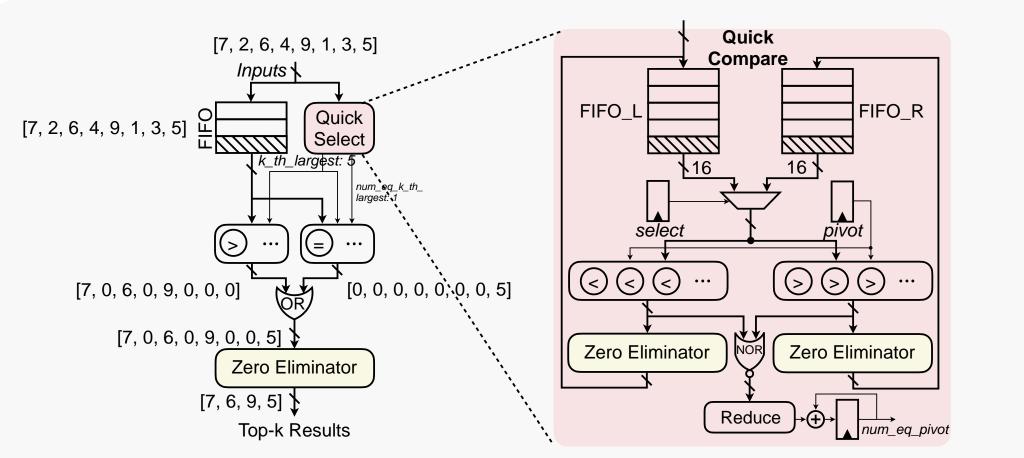
Cumulative importance scores in GPT-2. Unimportant tokens are pruned on the fly. Important tokens are heavily attended.

SpAtten: Transformer with Sparse Attention

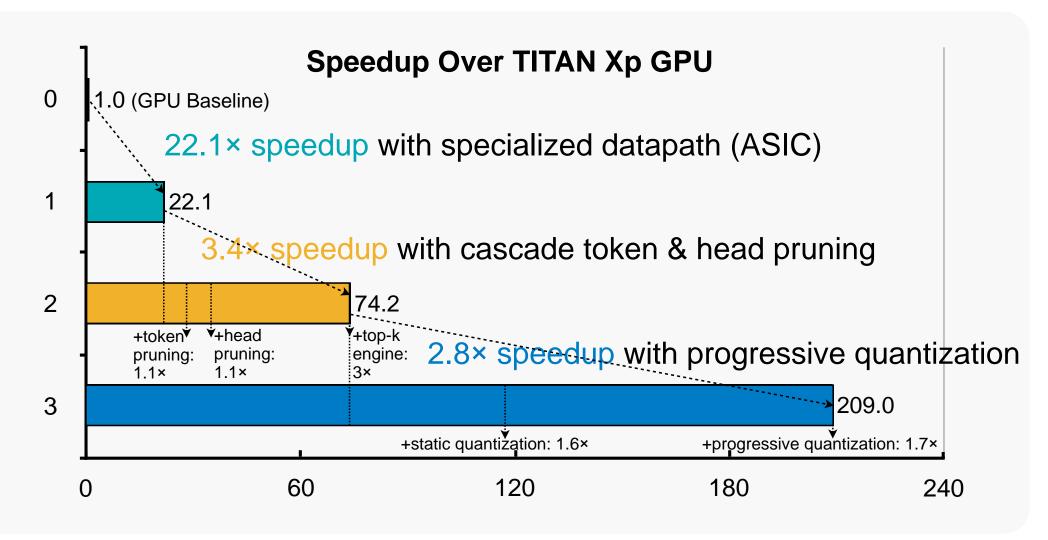
Progressive Quantization: high confident attention requires low bit width



Progressive Quantization: only use MSB when attention confidence is high



Specialized top-k engine to select important token and head



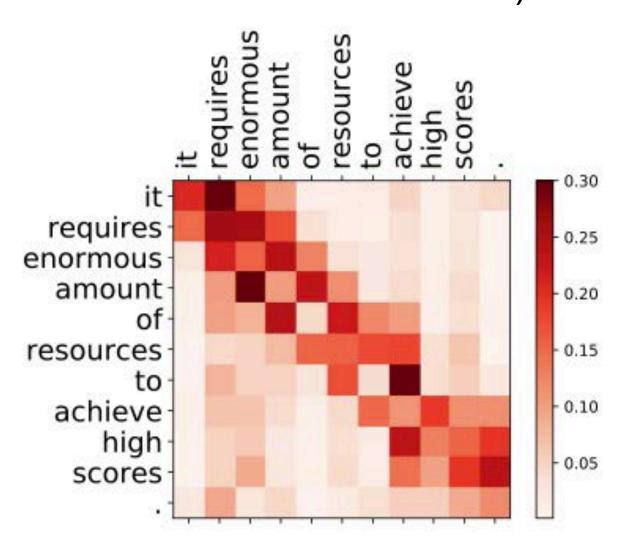
Lite Transformer

Local Convolution + Global Attention

- Long-Short Range Attention (LSRA):
 - Convolution: Efficiently extract the local (short-range) features.
 - Attention: Tailored for global (long-range) feature extraction.

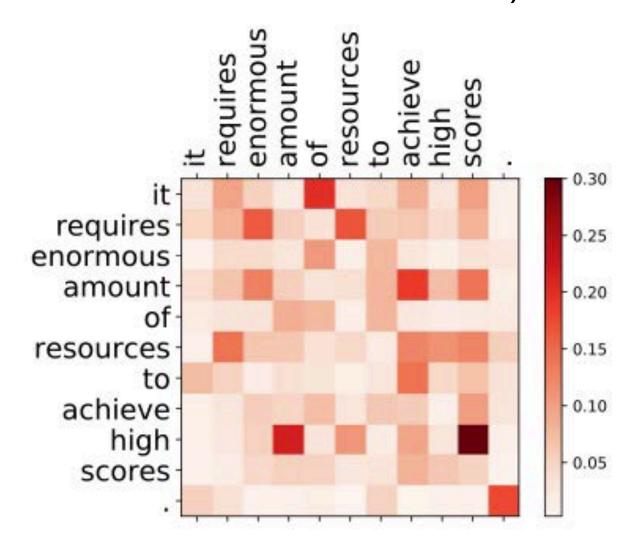
Original Attention

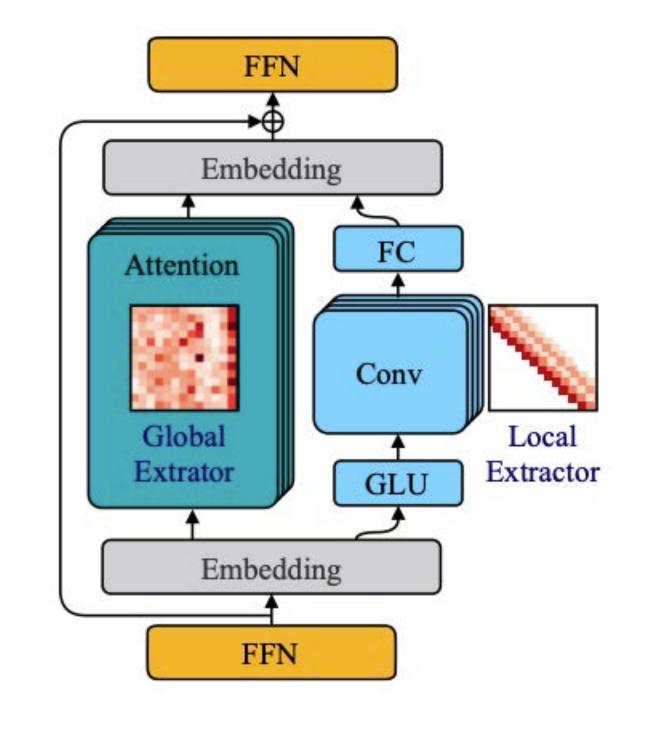
(Too much emphasize on local feature extraction)

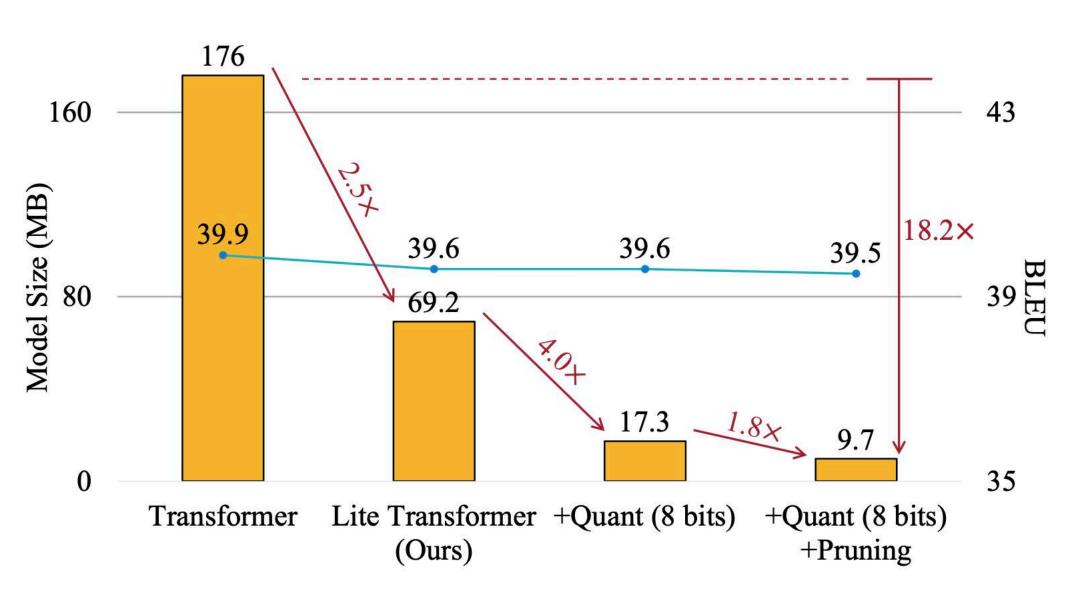


Attention in LSRA

(Dedicated for global feature extraction)

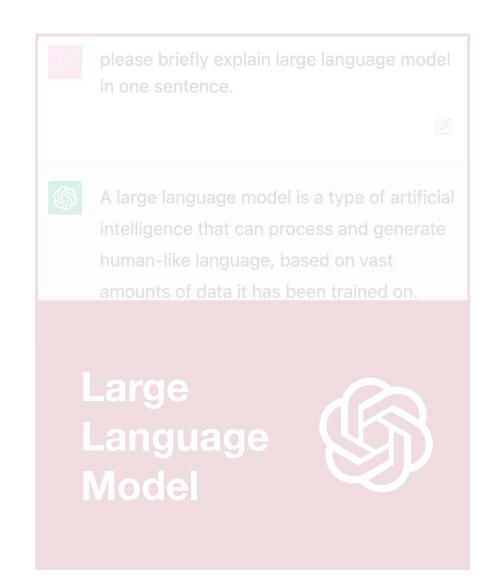


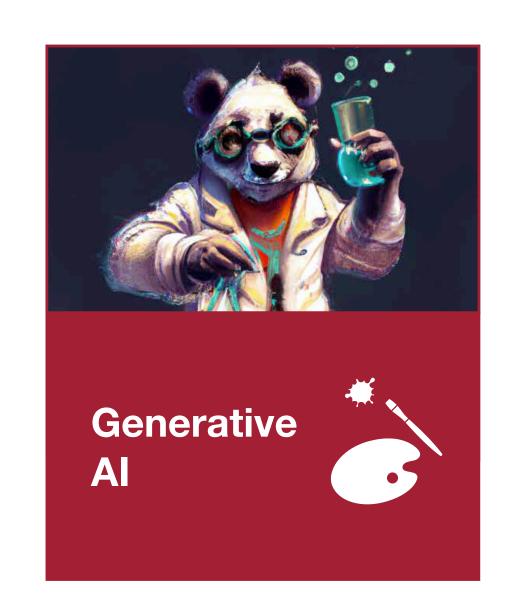


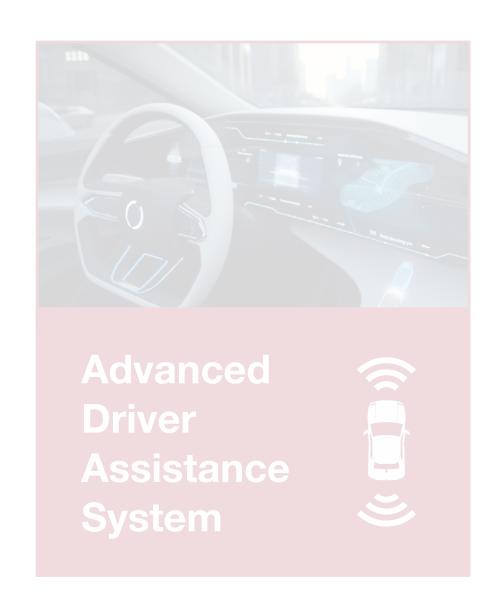


Same Principle, Diverse Applications

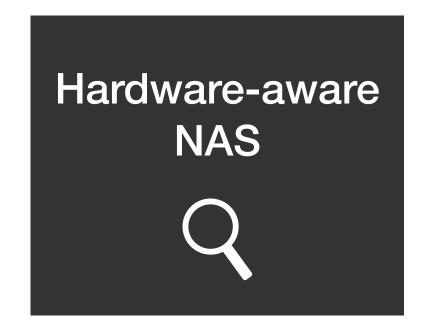
Applications

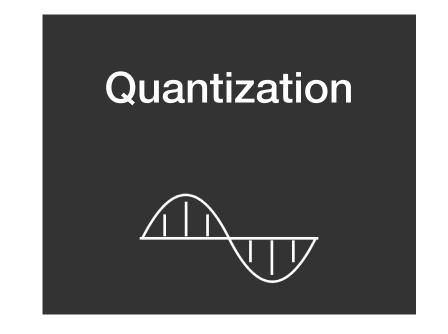






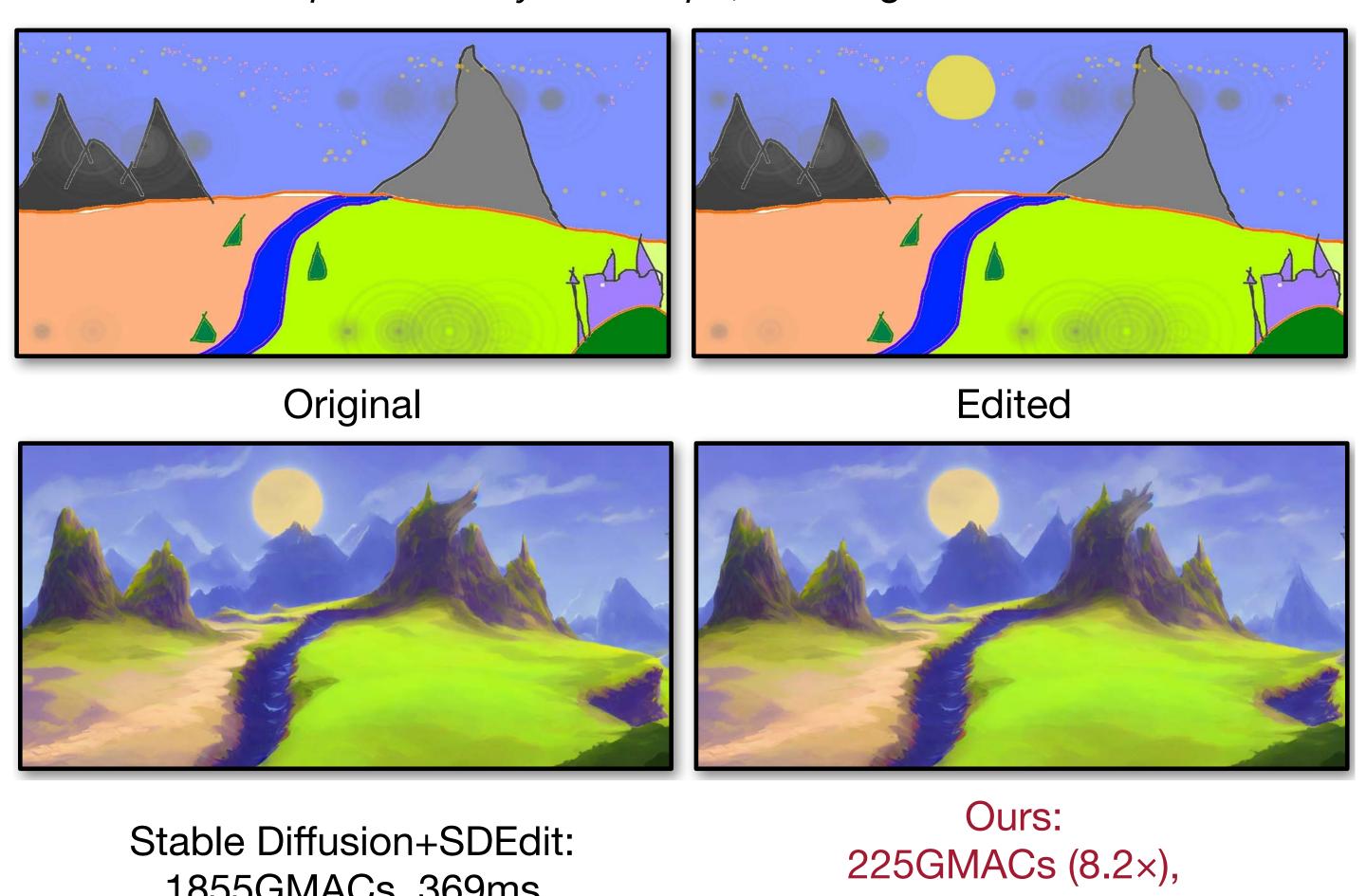
Techniques





Compressing and Accelerating Diffusion Models

Prompt: A fantasy landscape, trending on artstation.

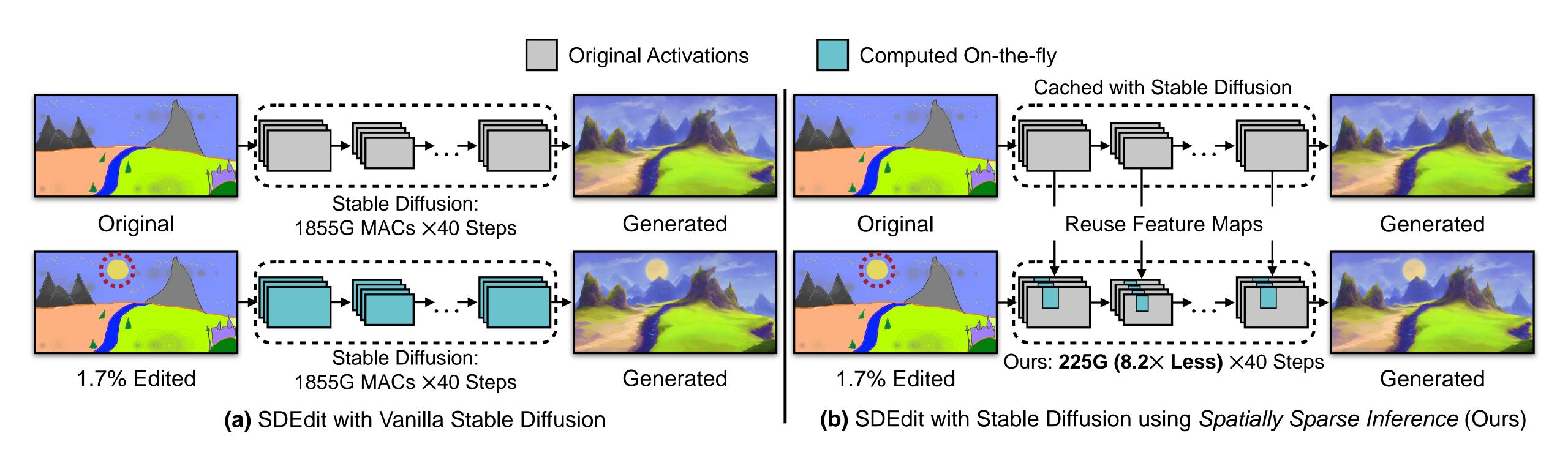


1855GMACs, 369ms

51.2ms (7.2x)

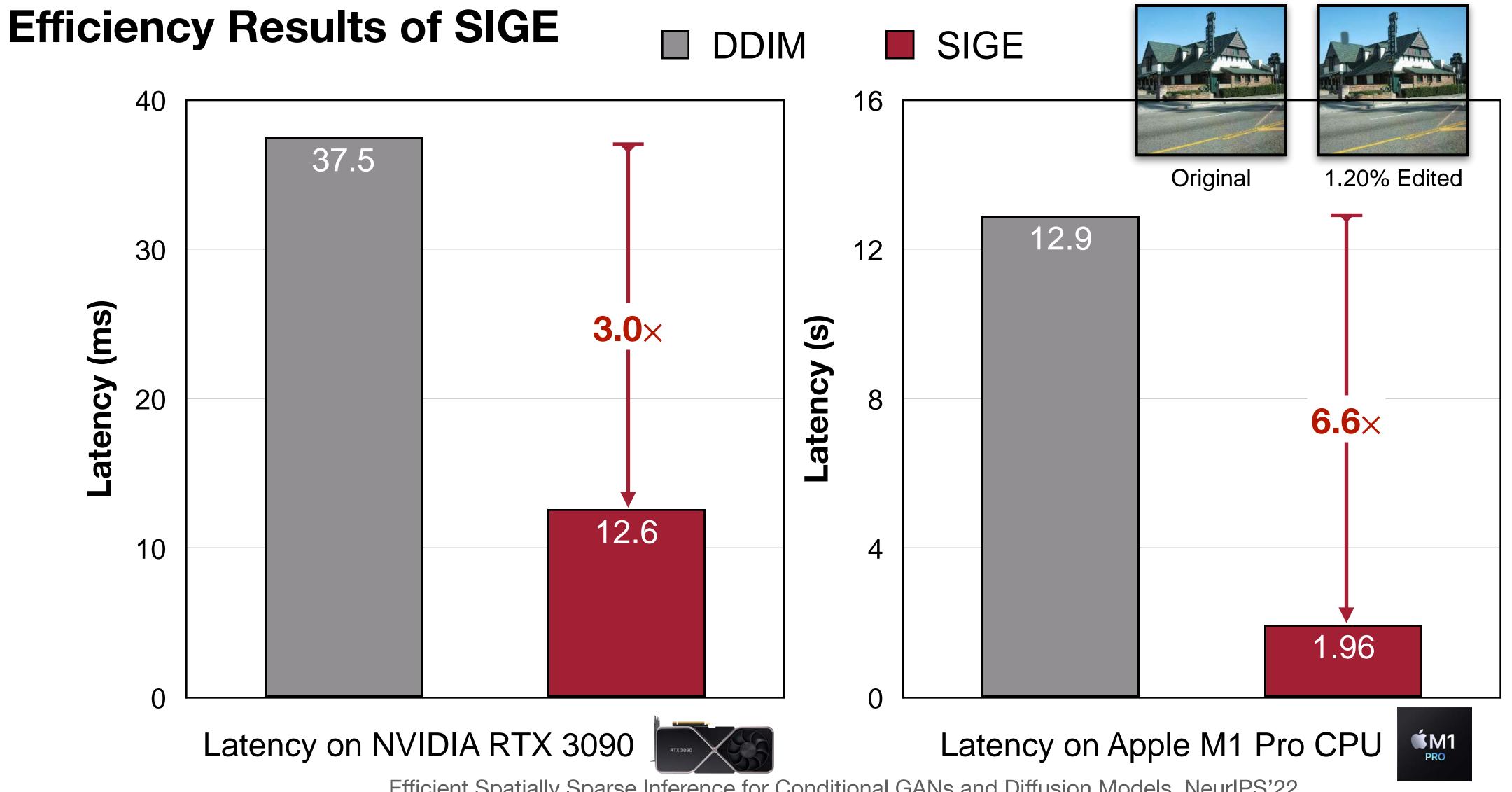
Spatially Sparse Inference for Diffusion Models

Vanilla Model Wastes Many Computations to Re-synthesize the Entire Image



- Only 1.7% region is edited, but vanilla model re-synthesizes the entire image.
- Feature maps remain mostly the same at unedited regions.
- Reuse cached activations to selectively update edited regions (8× less computation).

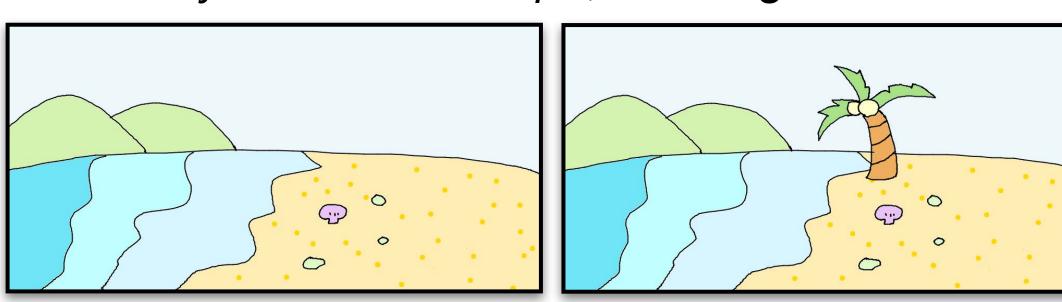
Spatially Sparse Inference for Diffusion Models



Spatially Sparse Inference for Diffusion Models

Qualitative Results of SIGE on Stable Diffusion

A photograph of a horse on a grassland.



A fantasy beach landscape, trending on artstation.

Original

11.6% Masked

Original 2.9% Edited

Stable Diffusion: 1855GMACs 369ms

Ours: 514G (3.6×) 95.0ms (3.9×)

Image Inpainting

Stable Diffusion+SDEdit: 1855GMACs 369ms

 $353G (5.3\times) 76.4ms (4.8\times)$

Ours:

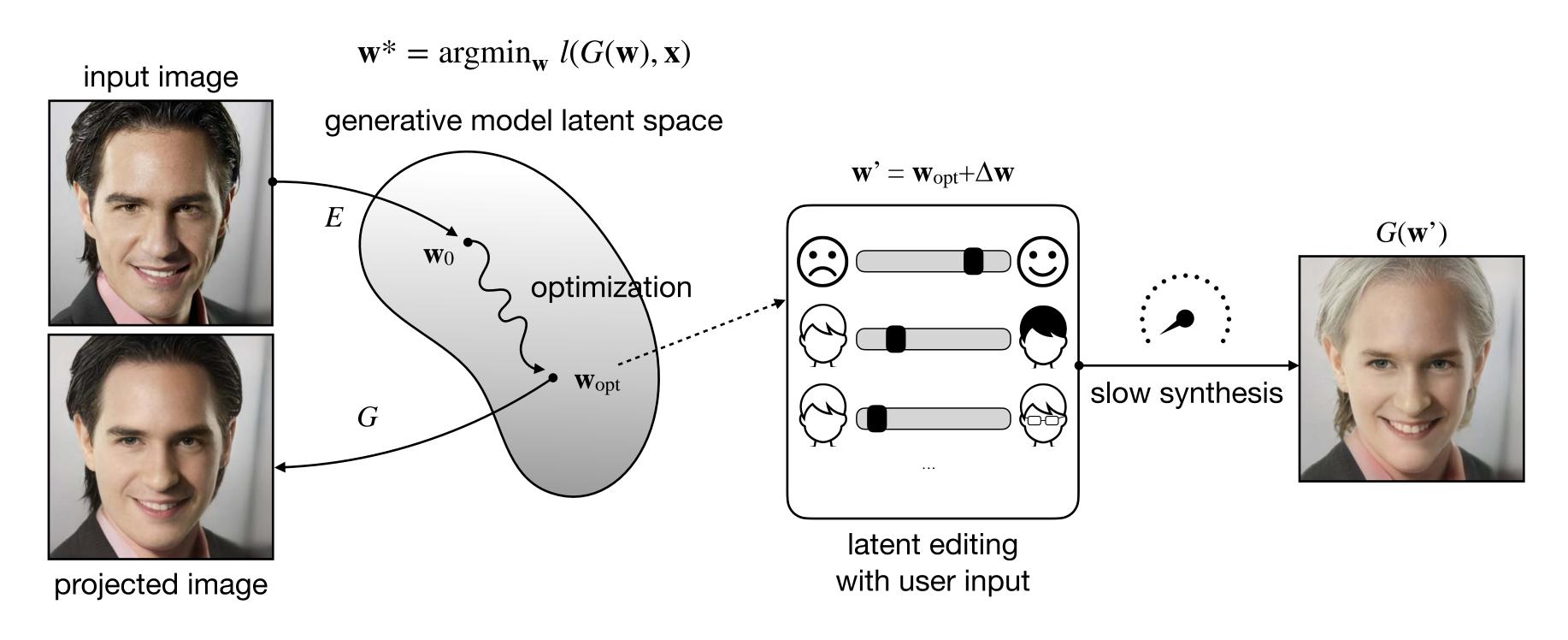
Image Editing

Latency Measured on NVIDIA RTX 3090

Anycost GAN

Image Editing With GANs

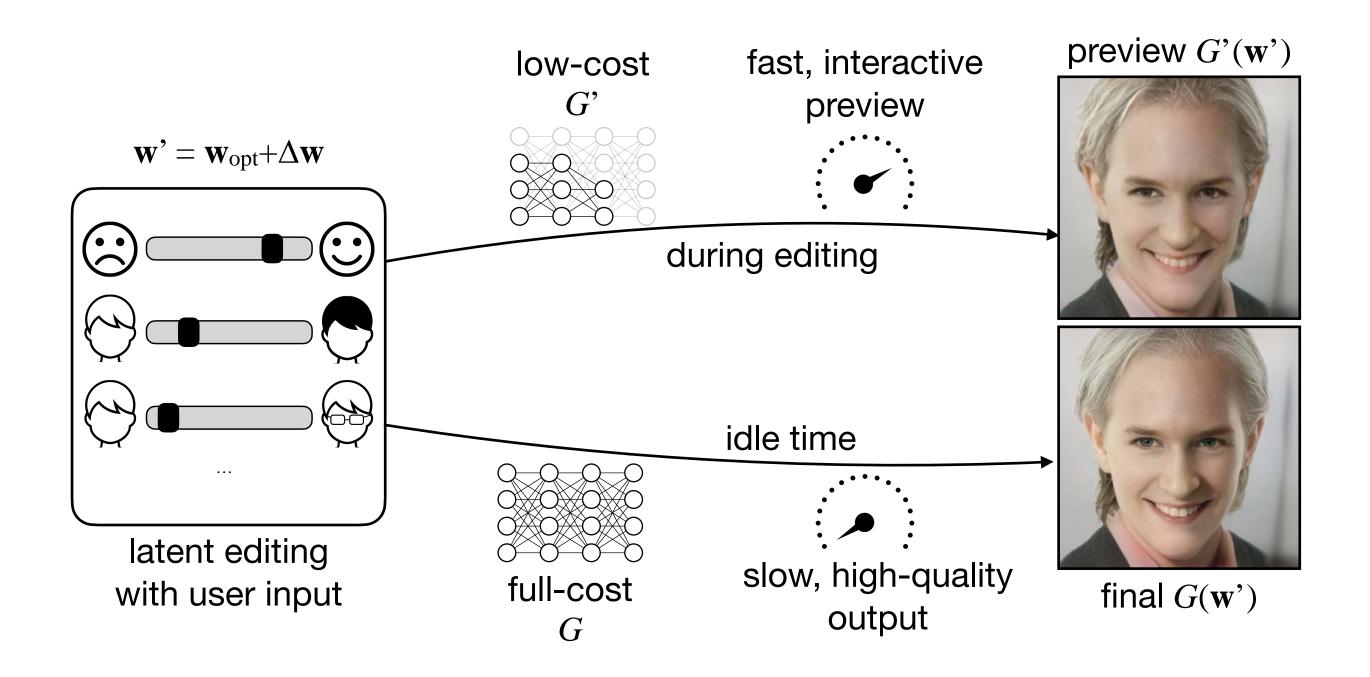
- We can edit an image by projecting an input image into the latent space of a GAN model, and then modify the latent code to generate a new image.
- Usually an interactive process, where users make frequent interactions.
- Problem: GAN model inference is slow; it usually requires a few seconds to get edited results, which hinders interactive use cases



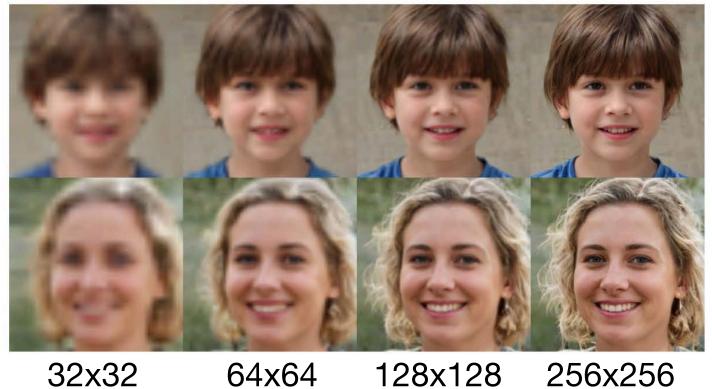
Anycost GAN

Quick Preview By Runner A Smaller But Consistent Model

- **Anycost GAN**
 - Run a low-cost model to generate a fast, interactive preview
 - Run a full-cost model to generate the final, high-quality output (during idle time)
- Supports flexible **resolutions** and **channel widths**



Flexible resolutions



Flexible channel widths

Anycost GAN

Tiered Pricing for Content Generation as a Service

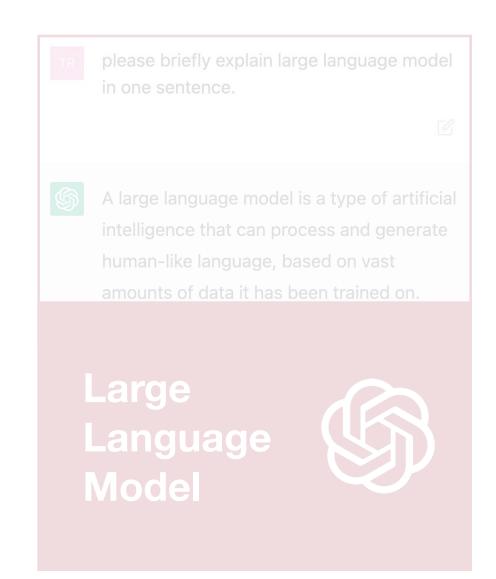
- Good quality despite 5x computation reduction

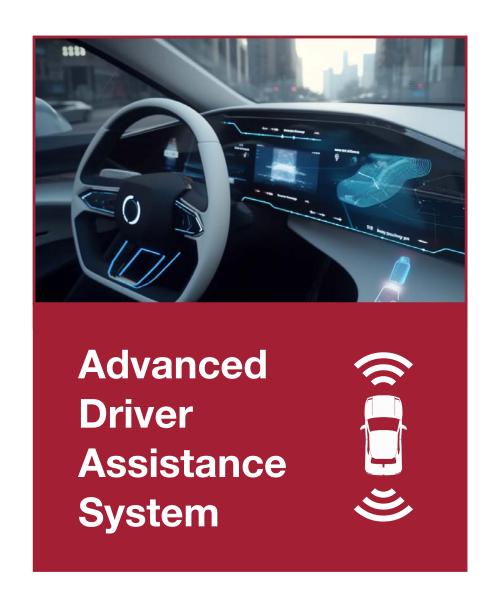
MACs: 100% 1.0x reduction

Compute Budget	1x	0.7x	0.5x	0.4x	0.2x
Tiered Pricing	\$0.01	\$0.007	\$0.005	\$0.004	\$0.02

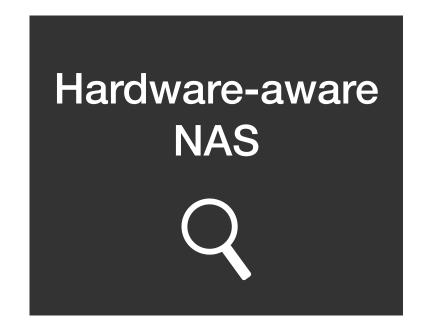
Same Principle, Diverse Applications

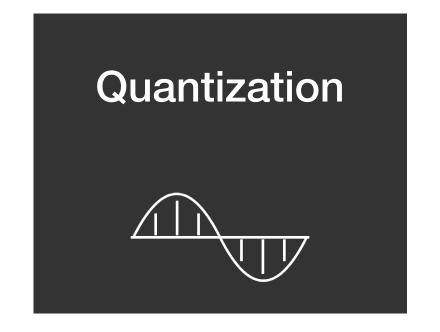
Applications





Techniques

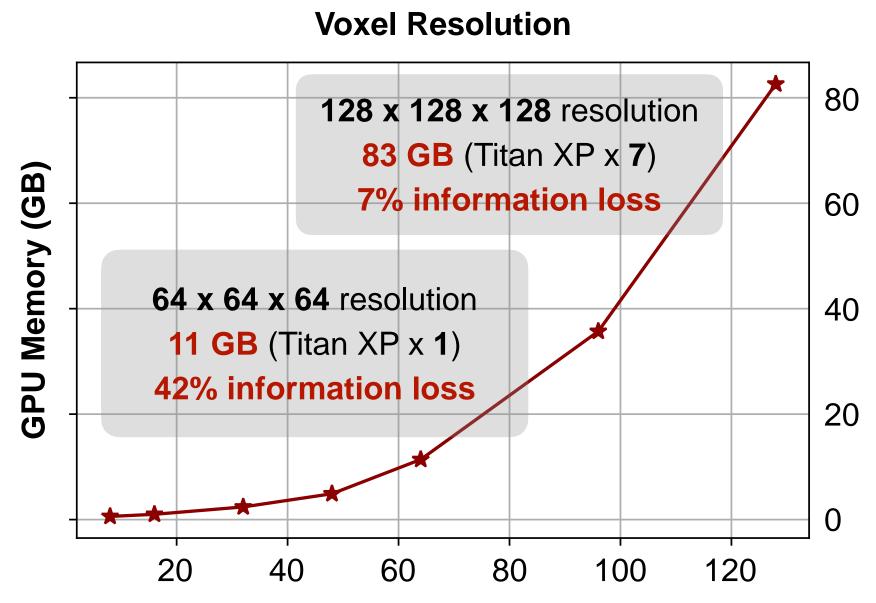




PVCNN: Point-Voxel CNN

New primitive for handling spatial sparsity in point clouds

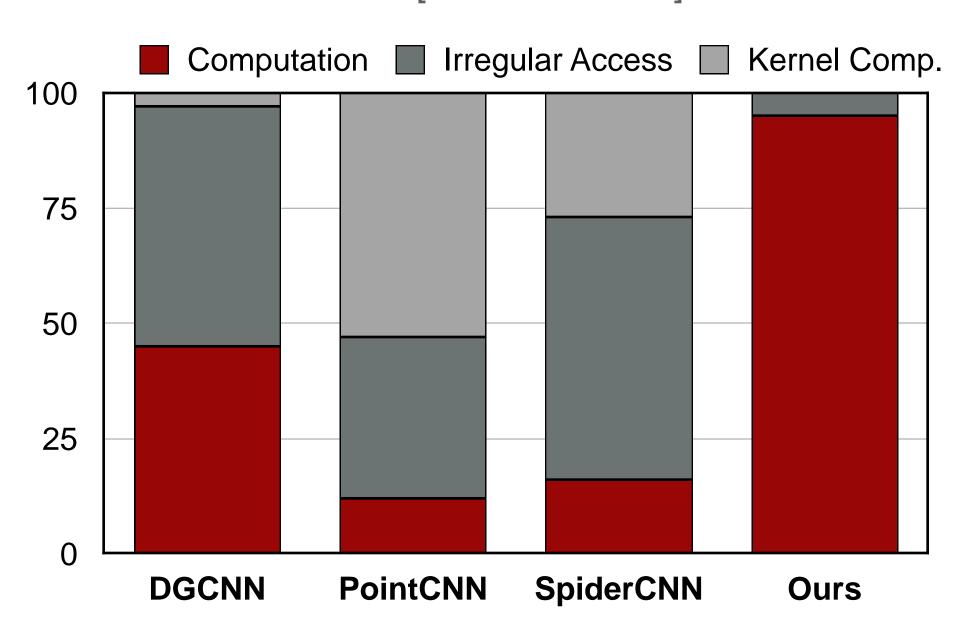
3D ShapeNets [CVPR'15]
VoxNet [IROS'15]
3D U-Net [MICCAl'16]



GPU memory consumption increases cubically with the volumetric resolution

Point-Based Models

PointNet [CVPR'17]
PointCNN [NeurlPS'18]
DGCNN [SIGGRAPH'19]

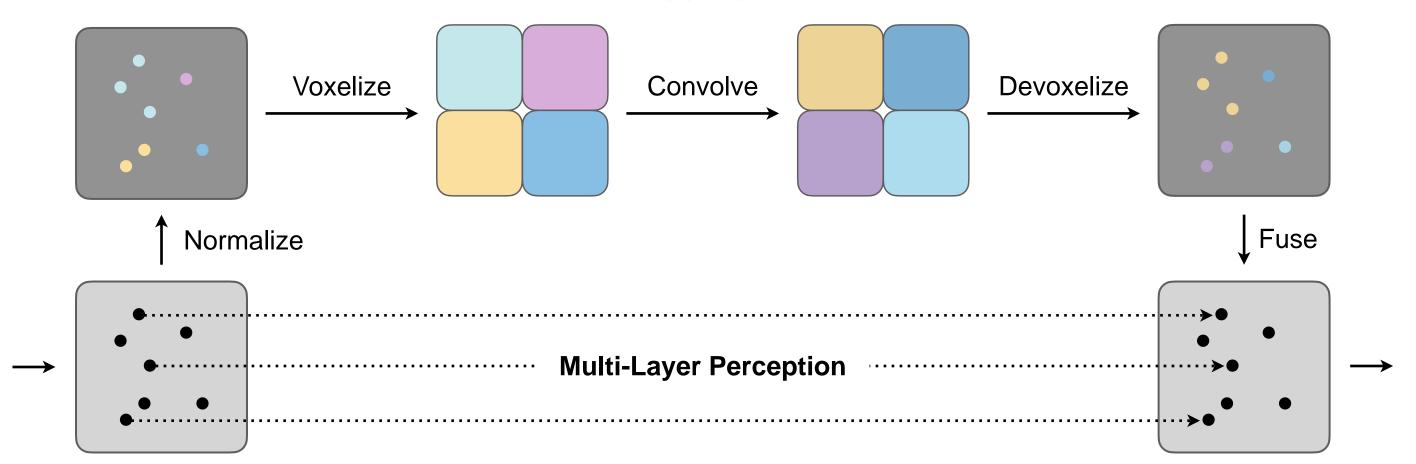


Point-based models suffer from random memory accesses and dynamic kernel computation

PVCNN: Point-Voxel CNN

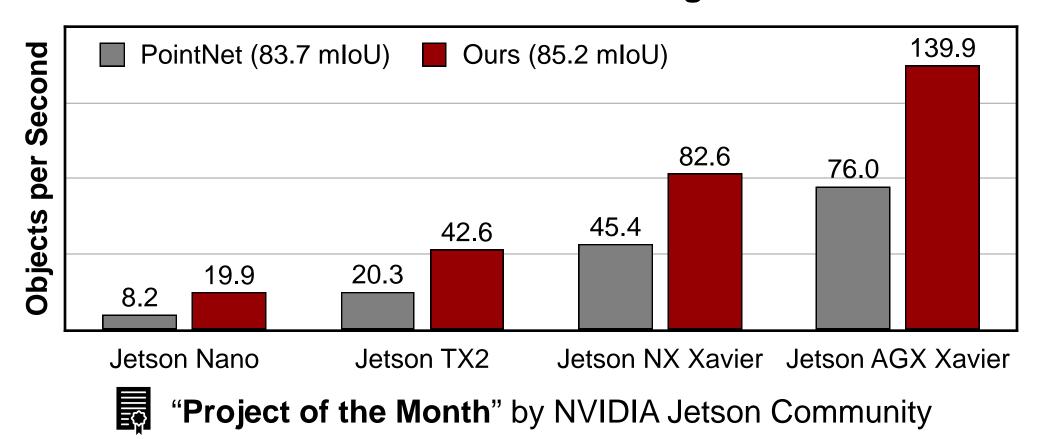
PVCNN is 2.7-6.9x faster than SOTA while being more accurate

Voxel-Based Feature Aggregation (Coarse-Grained)



Point-Based Feature Transformation (Fine-Grained)

Real-Time Inference on Edge Devices



Comparisons with Point-Based Models

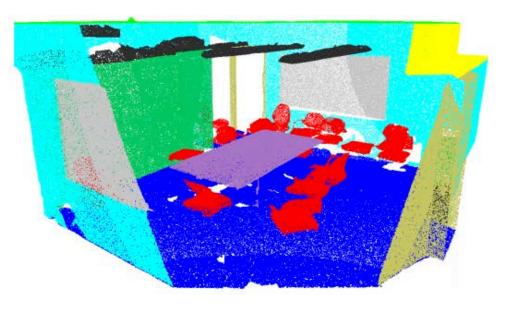
Voxel-based branch conducts convolution over a regular grid representation, which resolves the issue of random memory access.

Comparisons with **Voxel-Based Models**

Point-based branch captures **high-resolution** information **efficiently**, which resolves the issue of large memory footprint.

2.7x measured speedup1.5x memory reduction

Indoor Scene Semantic Segmentation

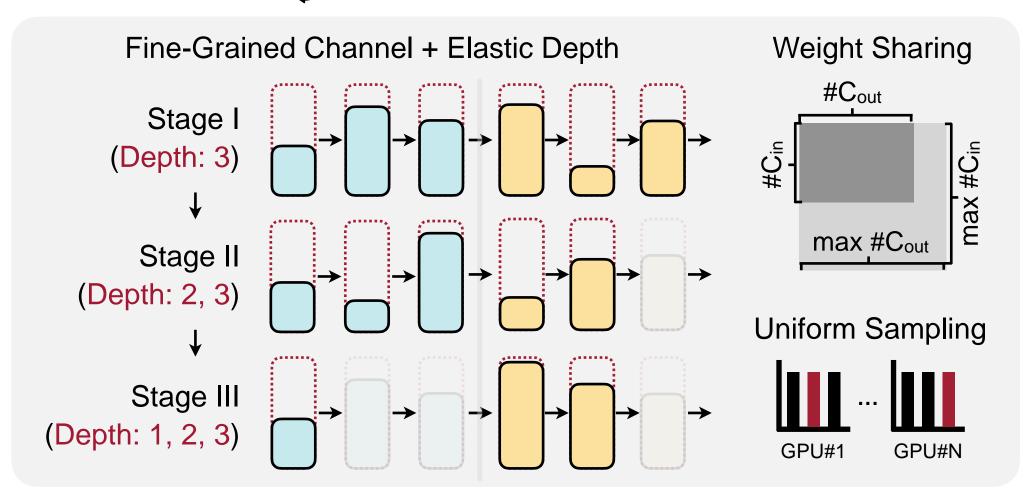


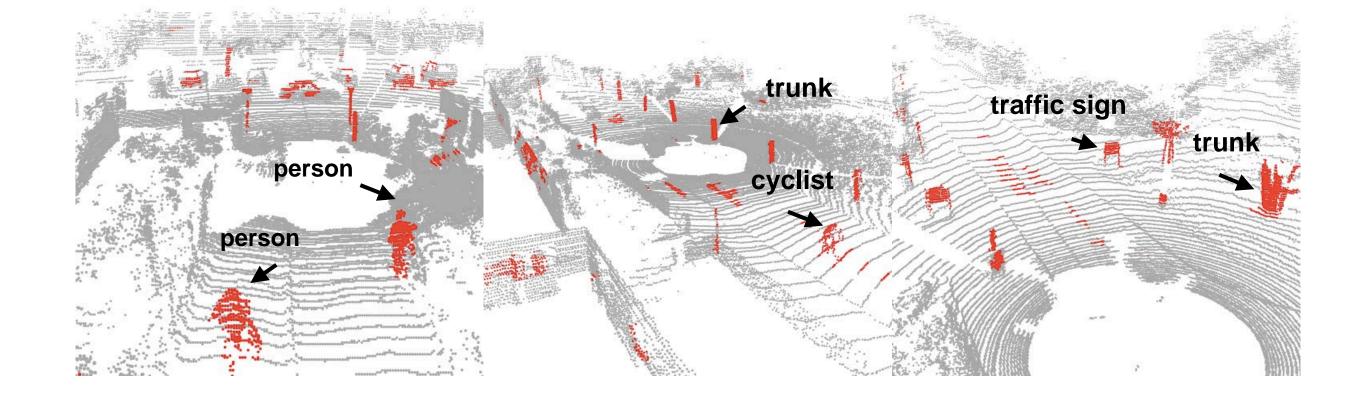
6.9x measured speedup5.7x memory reduction

SPVNAS: 3D NAS for Sparse Point Clouds

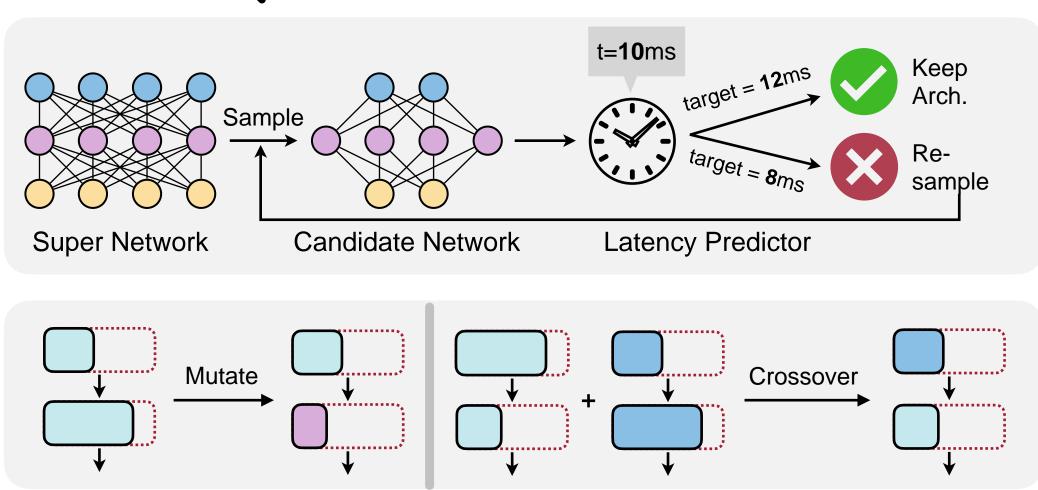
Neural Architecture Search for Point Cloud and LiDAR Perception

Super Network Training

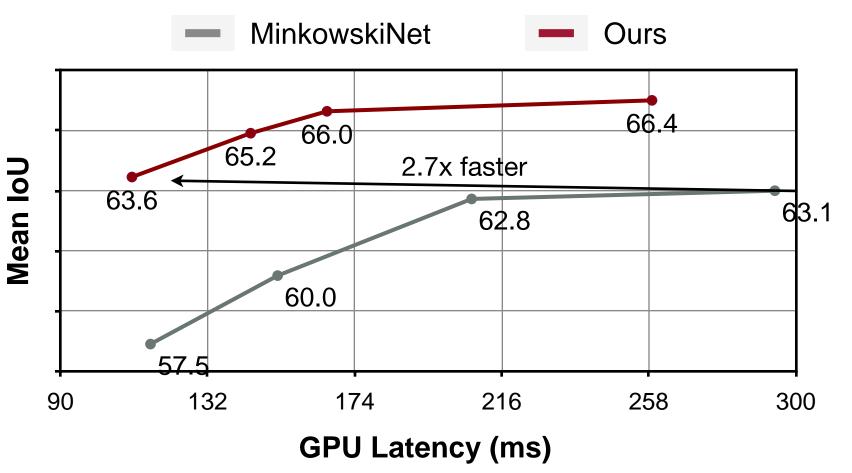




Q Evolutionary Architecture Search



Superior Efficiency-Accuracy Trade-Off (Especially Under Constrained Scenarios)

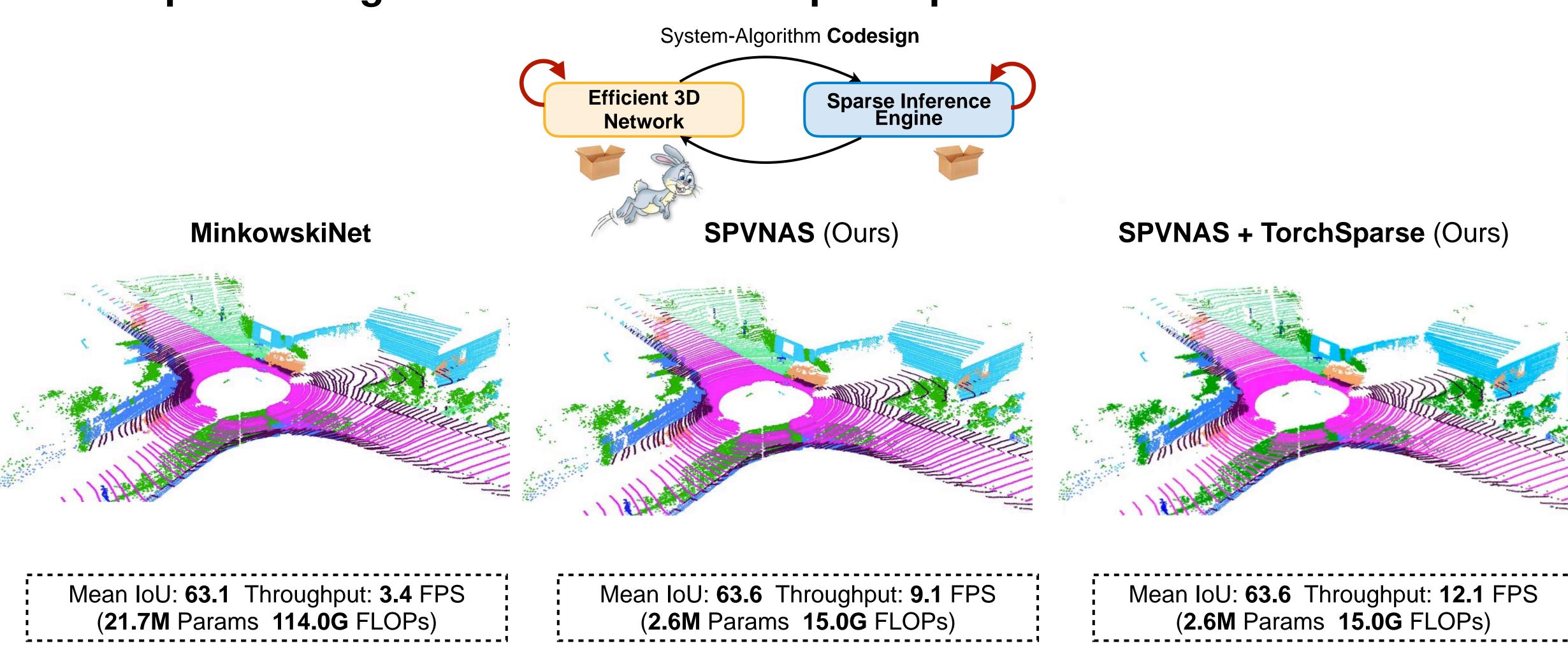


Difference from 2D NAS:

- **SPVConv** instead of 2D convolution as the building blocks;
- Enlarging design space on **channels** but shrinking search choices in **kernel sizes**.

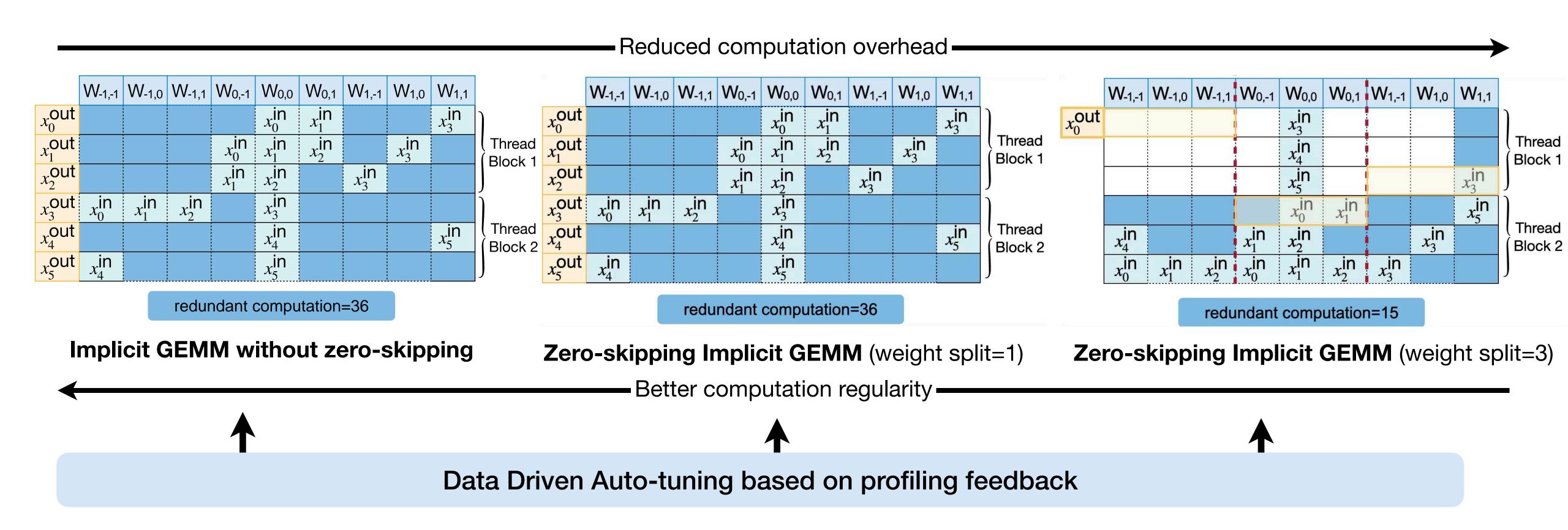
SPVNAS accelerated by TorchSparse

TorchSparse brings about another 1.3x speedup to the efficient SPVNAS model



TorchSparse: Efficient Point Cloud Library

Balancing computation regularity and computation overhead

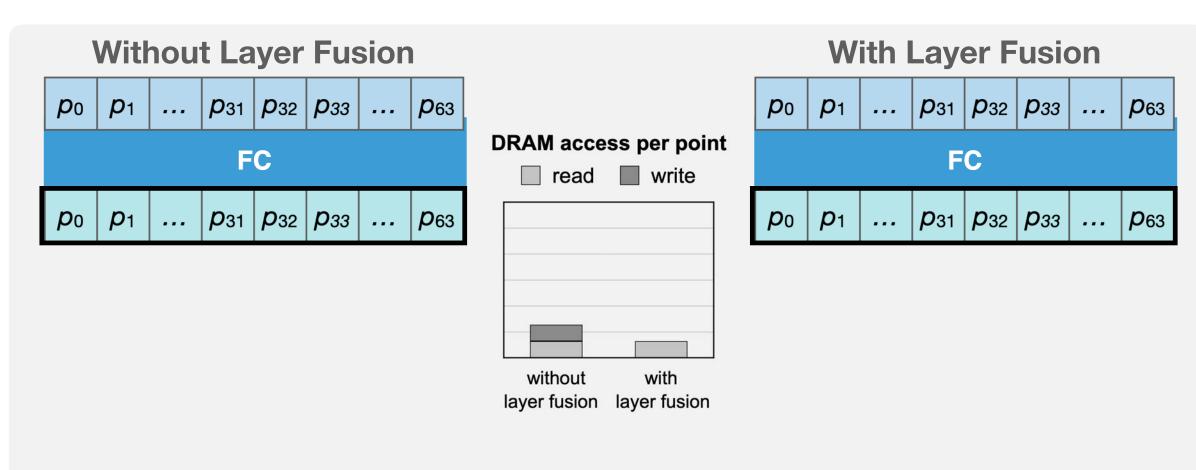


- Automatically determine the best tradeoff between control flow and computation overhead;
 - Mixed dataflow configurations for different layers and forward/backward computation.

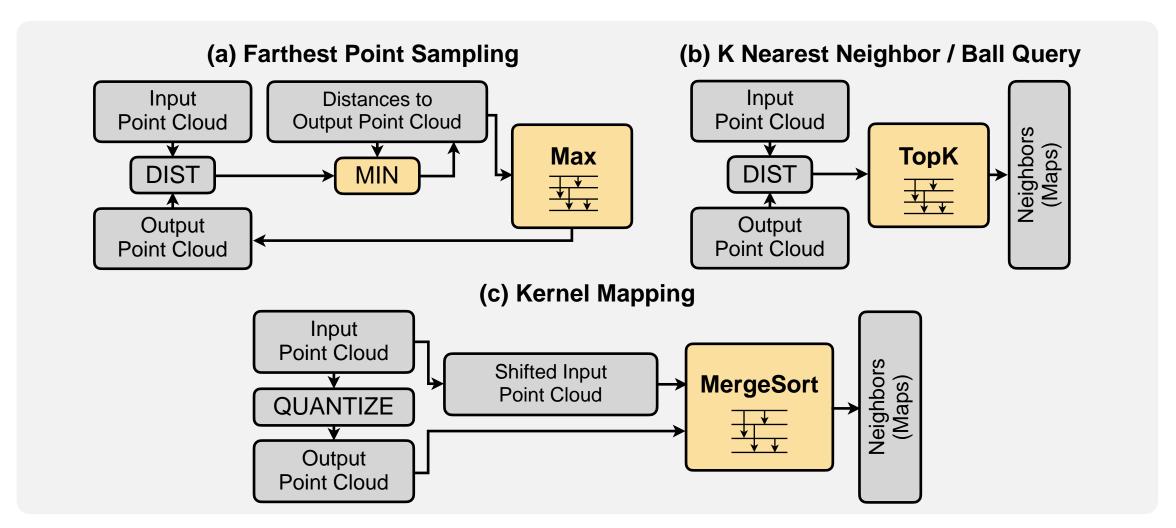
PointAcc: Point Cloud Accelerator

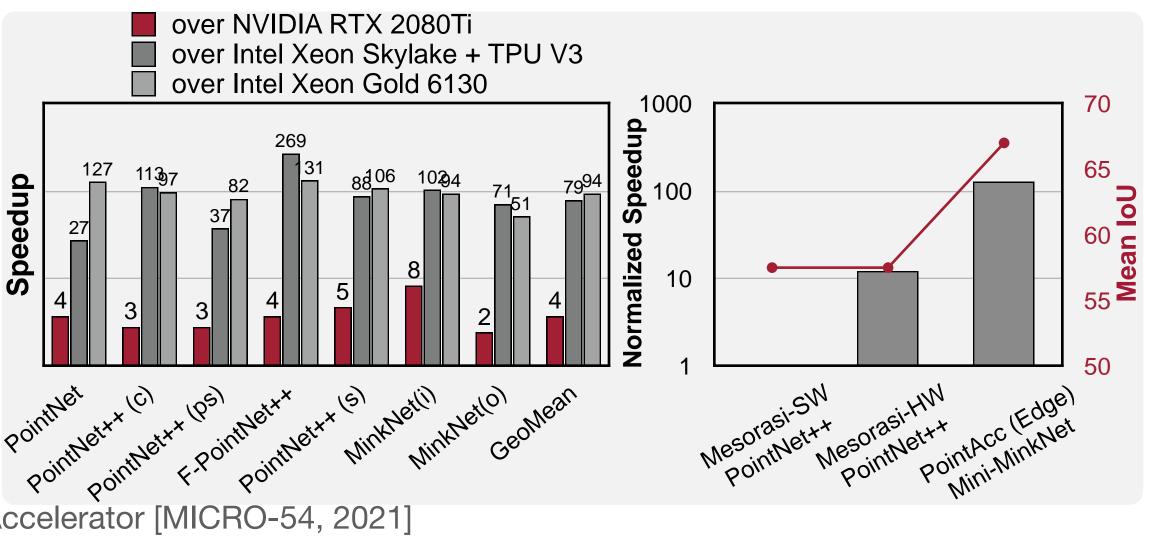
One hardware architecture, diverse neural architectures

- The sparsity of point clouds leads to two bottlenecks:
 - Diverse mapping operations for searching the input,
 Output, Weight maps (e.g., k-Nearest Neighbor, Ball Query, Kernel Mapping)
 - Data movement overhead from *gather and scatter* of the sparse features
- PointAcc maps diverse mapping ops into sort-based computation with *one versatile hardware architecture*.
- PointAcc reduces off-chip memory access and minimize the overhead of gather and scatter by *flexible caching* and *layer fusion*.



Diverse Mapping Ops in One Versatile Architecture



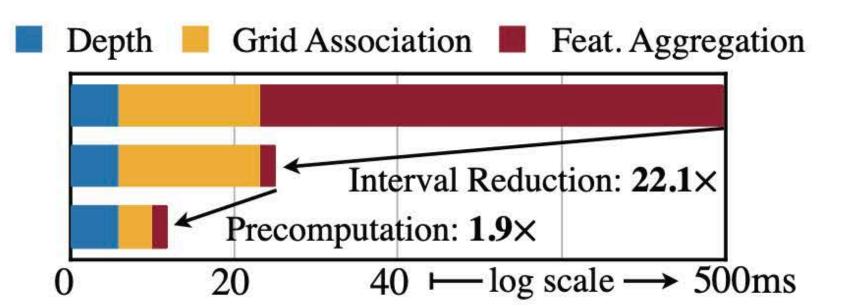


PointAcc: Efficient Point Cloud Accelerator [MICRO-54, 2021]

BEVFusion: Dense (Camera) + Sparse (LiDAR)

Accelerate LSS by 40x with Interval Reduction and Pre-computation





- Ranked first on nuScenes 3D object detection (2022/6).
- Ranked first on nuScenes 3D object tracking (2022/7).
- Ranked first on Waymo 3D object detection (2022/11).
- Ranked first on Argoverse 3D object detection (2023/4).

BEVFusion: Multi-Task Multi-Sensor Fusion

BEVFusion takes multi-modal sensory inputs and supports multiple 3D perception tasks.

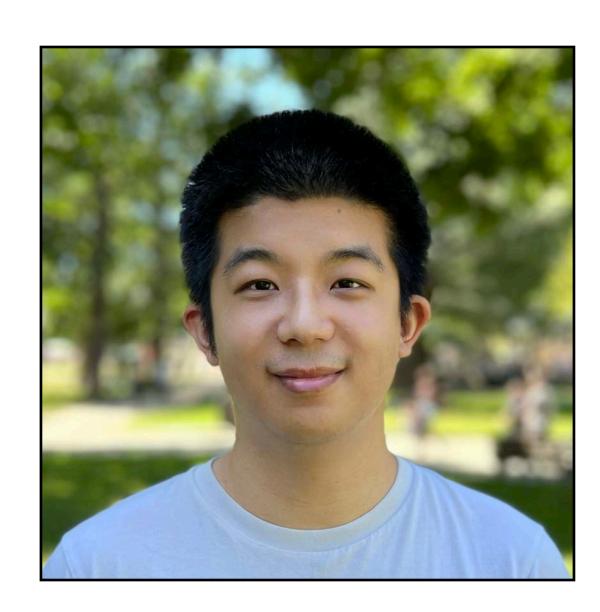
Multi-View Camera

Lidar

https://youtu.be/uCAka90si9E

PhD Student — Zhijian Liu

Research Interest: Efficient Algorithms and Systems for Deep Learning Graduating in Fall'23



Zhijian Liu
zhijian@mit.edu
https://zhijianliu.com

Representative Work

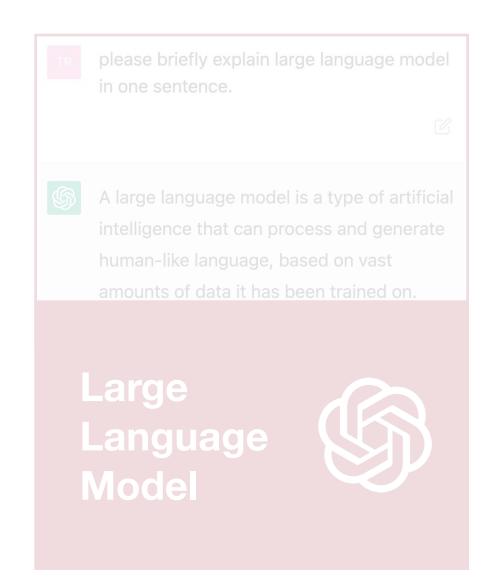
- Algorithms:
 - PVCNN (NeurIPS'19 Spotlight)
 - SPVNAS (ECCV'20, TPAMI'21)
 - FlatFormer (CVPR'23)
- Systems:
 - TorchSparse (MLSys'22)
- Applications:
 - BEVFusion (ICRA'23)

Selected Honors

- Qualcomm Innovation Fellowship
- NVIDIA Graduate Fellowship
- MIT Ho-Ching and Han-Ching Fund Award

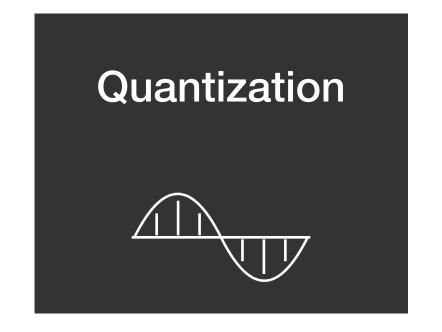
Same Principle, Diverse Applications

Applications





Techniques



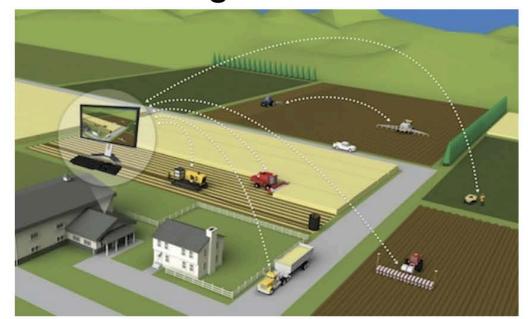
Background: The Era of AloT on Microcontrollers

Smart Retail

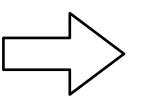
Personalized Healthcare

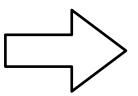
Smart Home

Precision Agriculture



- **Problem**: restricted memory size





Cloud Al

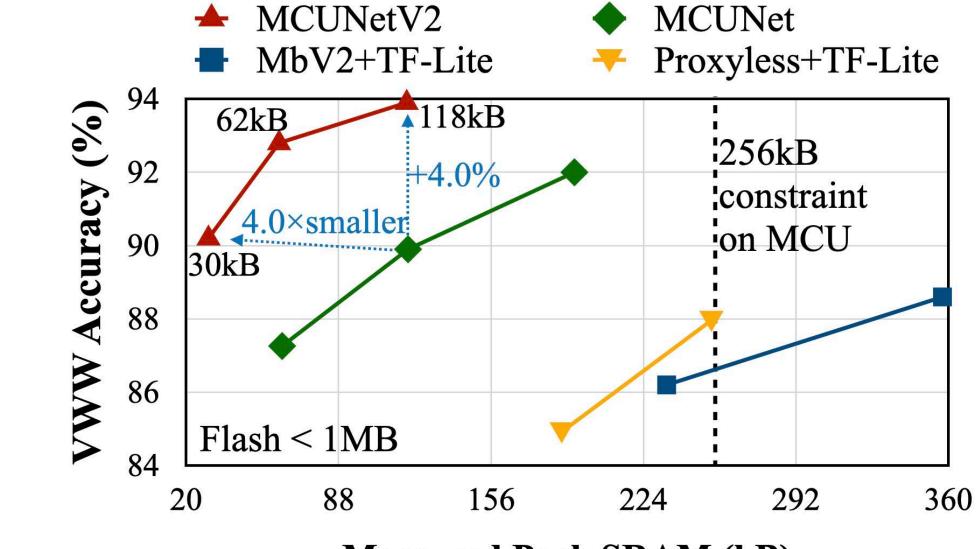
Mobile Al

Tiny AI

Memory (Activation)	32GB	4GB	320kB
Storage (Weights)	~TB/PB	256GB	1MB

MCUNet

Deploy AI on MCUs that has only 256KB SRAM



Measured Peak SRAM (kB)

Face/mask detection

Person detection

The camera is OpenMV Cam.

Inference Is Good. Can We Learn on Edge?

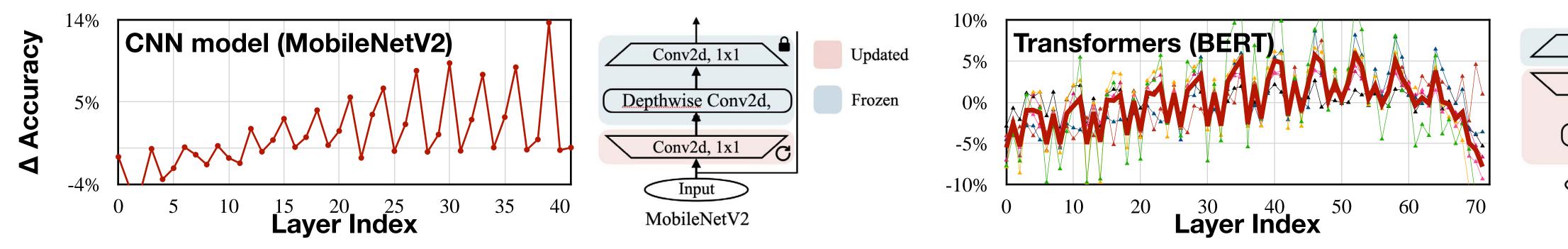
All systems need to continually adapt to new data collected from the sensors Not only inference, but also training

- ·On-device learning: better privacy, lower cost, customization, life-long learning
- Training is more expensive than inference, hard to fit edge hardware (limited memory)

Sparse Training

Only update important layers and sub-tensors to save memory

Sensitivity analysis



- Later layers are more important
- The first point-wise conv in each block contributes more

- Middle layers are more important
- Attention and first FFN layers contribute more.

FFN Linear 2

FFN Linear

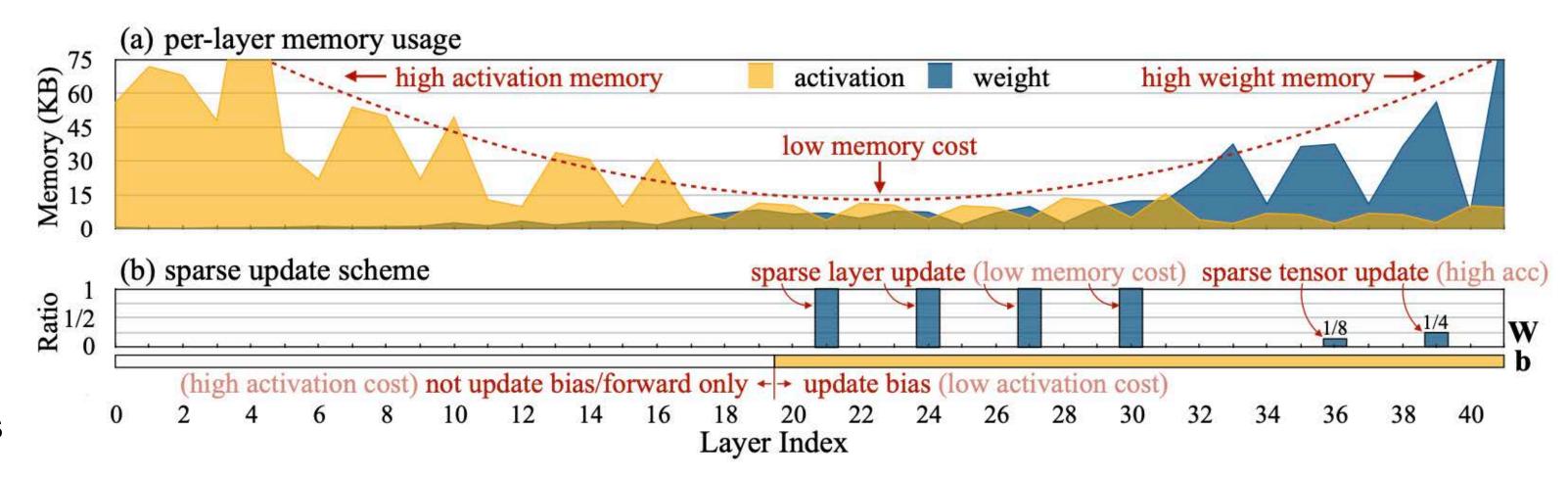
Multi-Head Attn

Embedding

BERT

Detailed Update Scheme for MobileNetV2

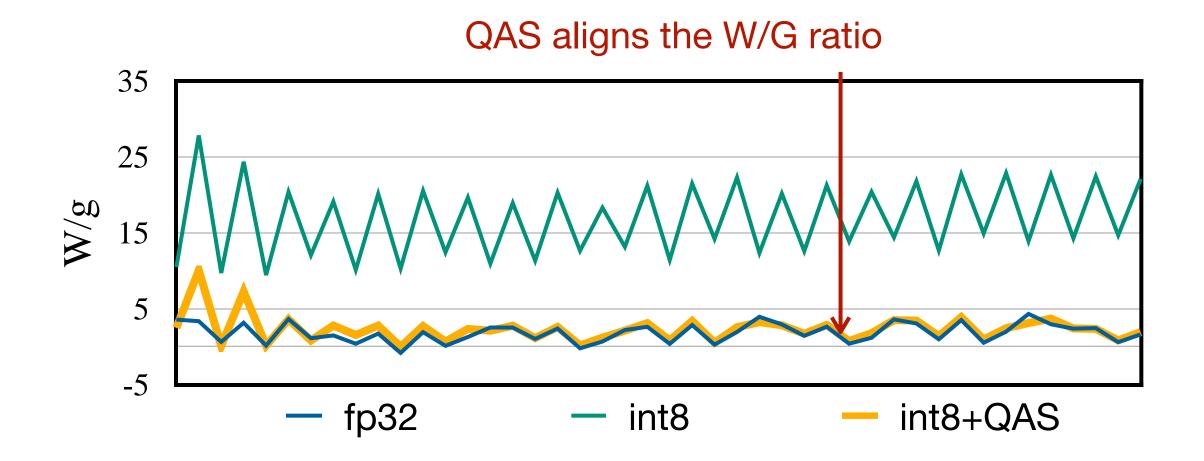
- The **activation cost** is high for the early layers;
- The weight cost is high for the later layers;
- The **overall memory** cost is low for the middle layers.
 - Bias-only update
 - Update weights for the middle layers



Low-Precision Training

with Quantization Aware Scaling (QAS)

- Optimizing an INT8 quantized graph leads to memory and computing savings
 - All weights and activations are in **INT8**
 - Different from quantization-aware training (QAT),
 where operations are performed in FP16
- ... But at the cost of worse convergence
- We found the issue lie lies in gradient scale mismatch

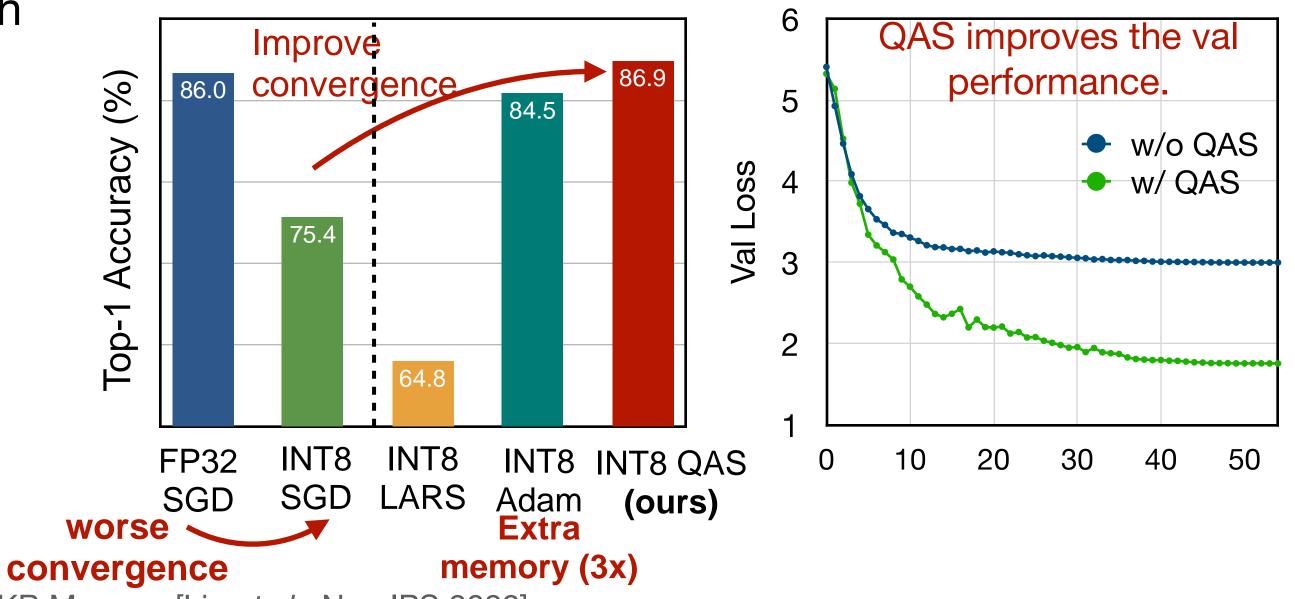


- Solution: quantization-aware scaling (QAS)

[-2, 3]
$$W = s_W \cdot (W/s_W) \overset{quantize}{\approx} s_W \cdot W_Q, \quad G_{W_O} \approx s_W \cdot G_W$$

weight and gradient ratios are off by s_W^{-2} $||W_Q||/||G_{W_Q}|| \approx ||W/s_W||/||s_w \cdot G_W|| = s_W^{-2} \cdot ||W||/||G||$

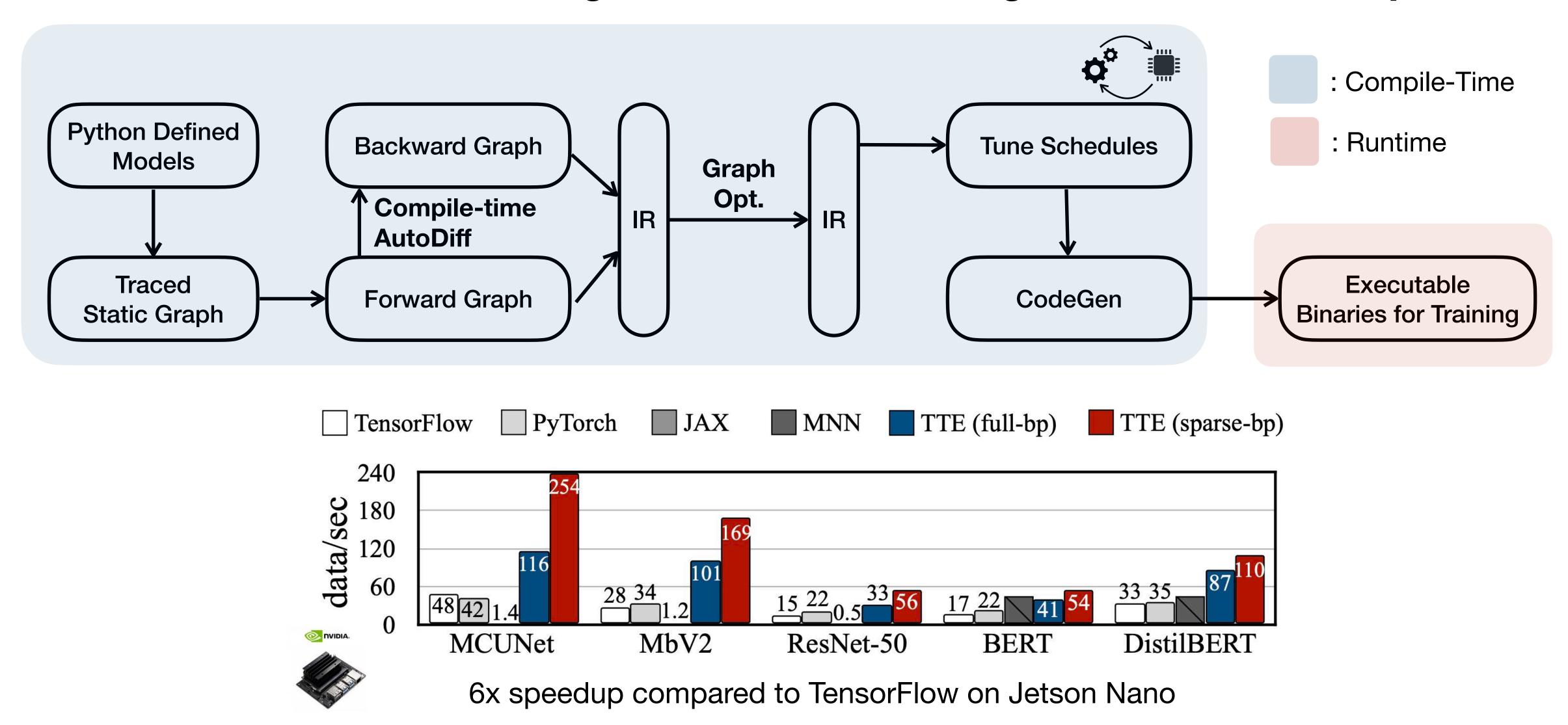
Thus, we need to re-scale the gradients $G'_{W_O} = G_{W_O} \cdot s_W^{-2}$

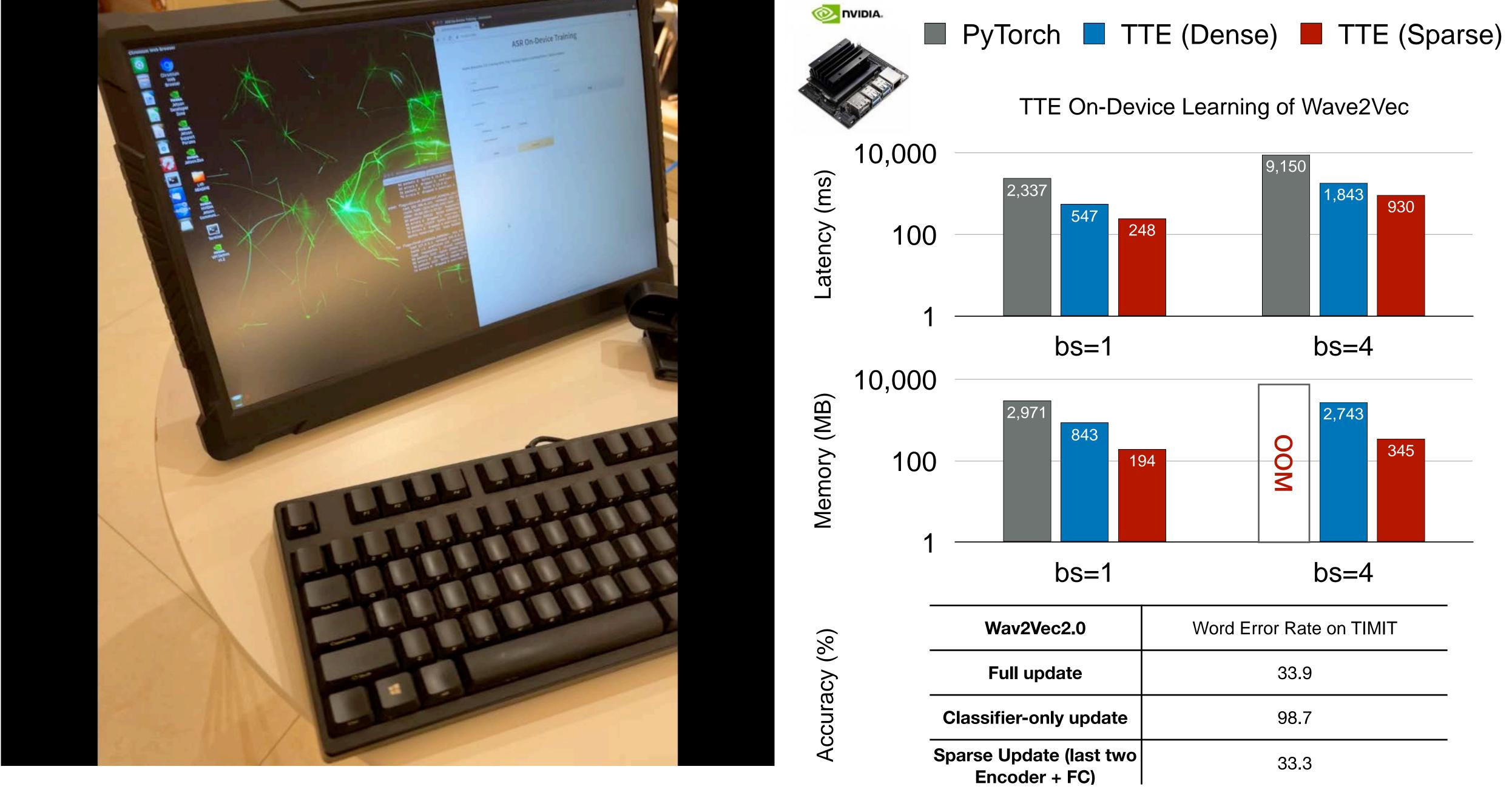


On-Device Training Under 256KB Memory [Lin et al., NeurIPS 2022]

Tiny Training Engine

Translate the theoretical saving into measured savings. Runtime => Compile time





Device: Jetson Nano; Backend: Tiny Training Engine; Task: Speech Recognition

Model Compression for Diverse Applications

Video Synthesis

Search Engine Revolution

Chatbots

Predictive Maintenance Gesture Recognition

Storytelling

Art Generation Question Answering

Augmented Reality

Autonomous Driving

Video Recognition

Music Composition

Sentiment Analysis

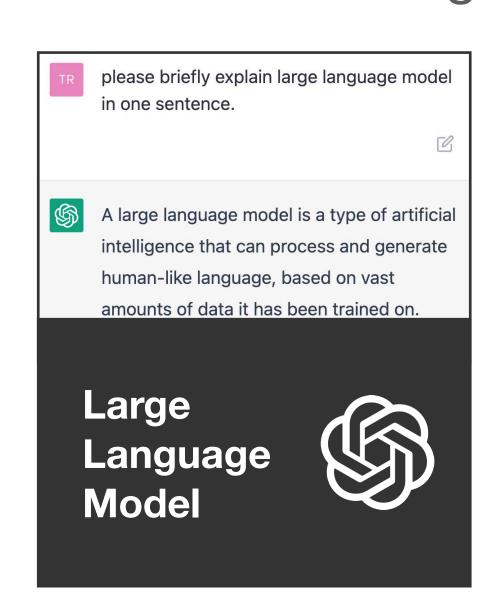
Blind Spot Detection

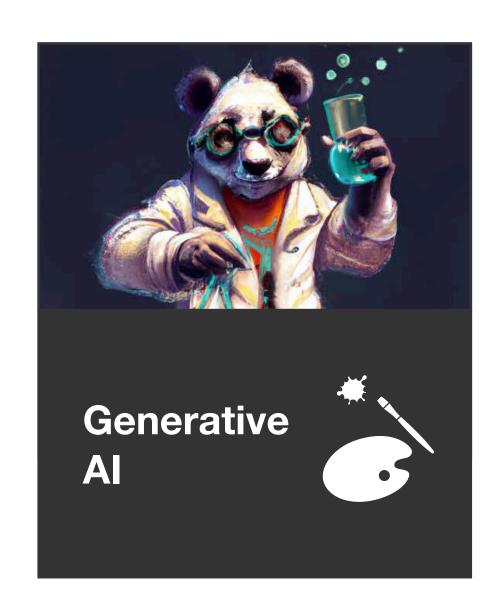
Health Monitoring

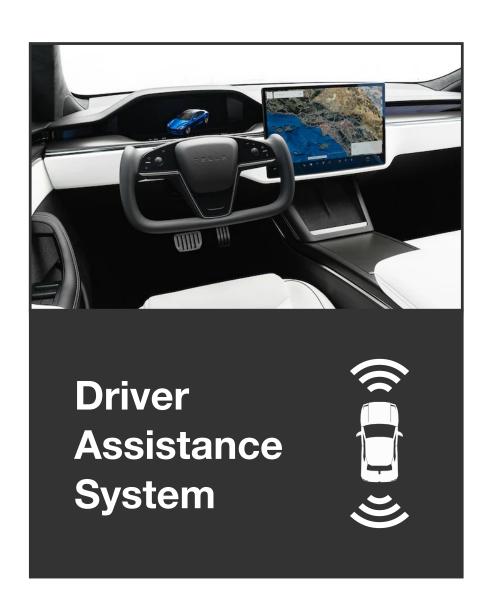
Fashion Design

Machine Translation

Adaptive Cruise Control



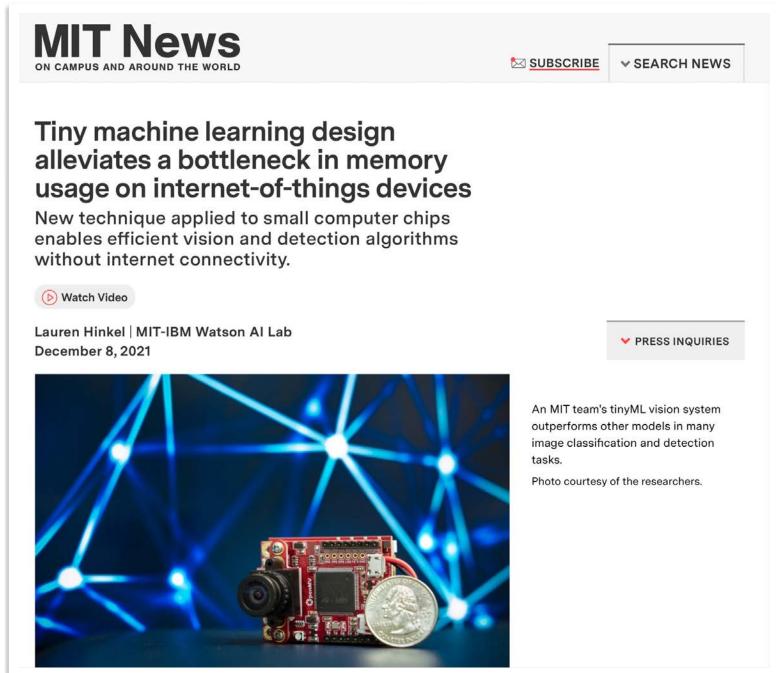


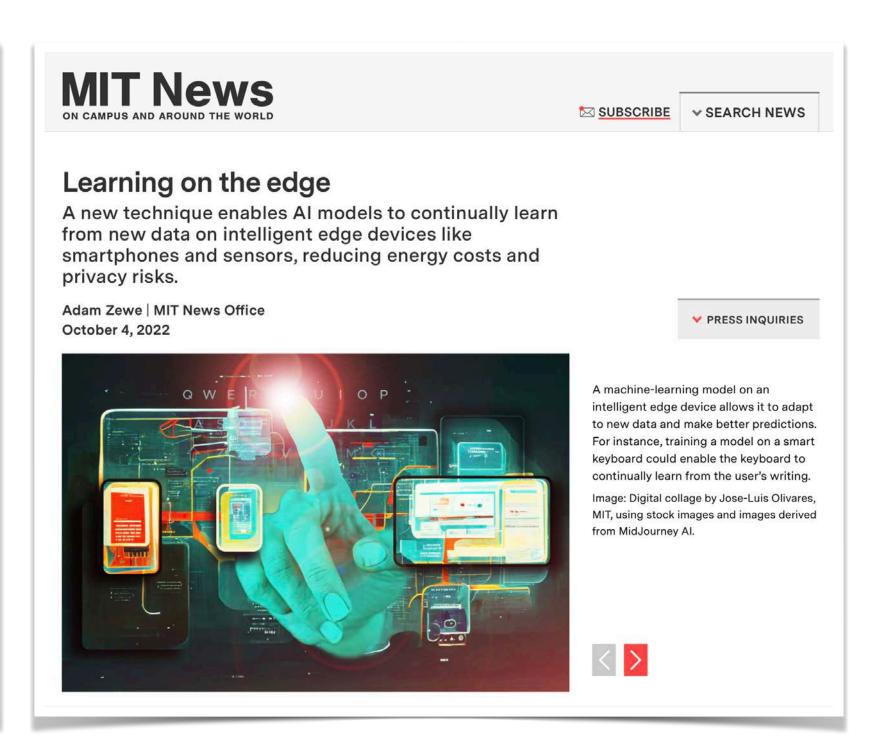


Application (demand of computation)

Hardware (supply of computation)

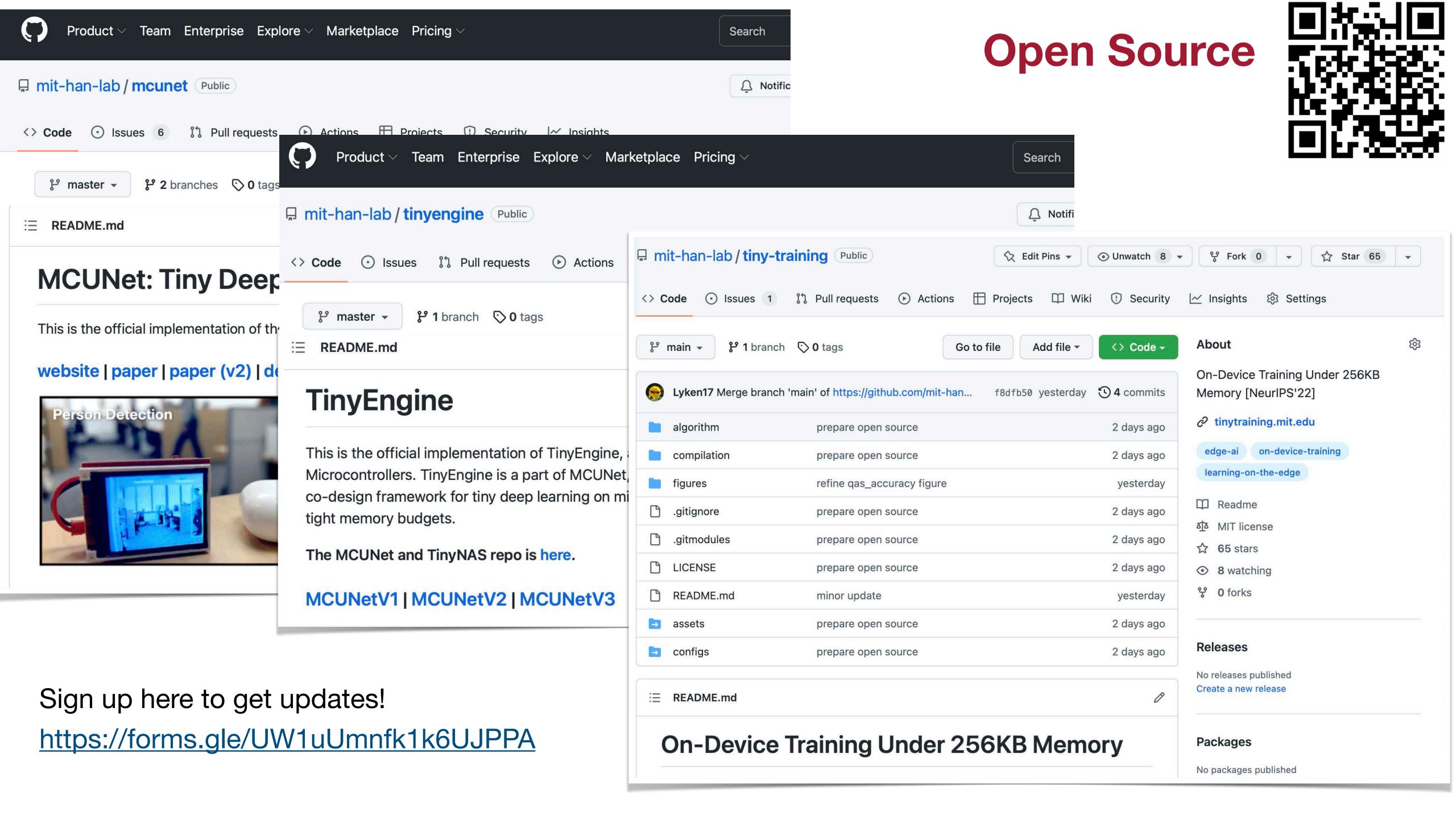
Media





(Highlighted by MIT Homepage)

(Highlighted by MIT Homepage)



New Course: TinyML and Efficient Deep Learning Computing

MIT 6.S965: https://efficientml.ai

6.S965 Logistics Schedule

TinyML and Efficient Deep Learning

6.S965 • Fall 2022 • MIT

Have you found it difficult to deploy neural networks on mobile devices and IoT devices? Have you ever found it too slow to train neural networks? This course is a deep dive into efficient machine learning techniques that enable powerful deep learning applications on resource-constrained devices. Topics cover efficient inference techniques, including model compression, pruning, quantization, neural architecture search, and distillation; and efficient training techniques, including gradient compression and on-device transfer learning; followed by application-specific model optimization techniques for videos, point cloud, and NLP; and efficient quantum machine learning. Students will get hands-on experience implementing deep learning applications on microcontrollers, mobile phones, and quantum machines with an open-ended design project related to mobile AI.

- Time: Tuesday/Thursday 3:30-5:00 pm Eastern Time
- Location: 36-156
- Office Hour: Thursday 5:00-6:00 pm Eastern Time, 38-344 Meeting Room
- Discussion: Piazza
- Homework submission: Canvas
- Online lectures: The lectures will be streamed on YouTube.
- Resources: MIT HAN Lab, Github, TinyML, MCUNet, OFA
- Contact: Students should ask all course-related questions on Piazza. For external inquiries, personal matters, or emergencies, you can email us at 6s965-fall2022-staff@mit.edu.

Instructor Song Han Email: songhan@mit.edu

TA Zhijian Liu
Email: zhijian@mit.edu

TA Yujun Lin
Email: yujunlin@mit.edu

Anonymous Student Feedback Collected from Mid-term

 This course is a deep dive into efficient machine learning techniques that enable powerful deep learning applications on resourceconstrained devices.

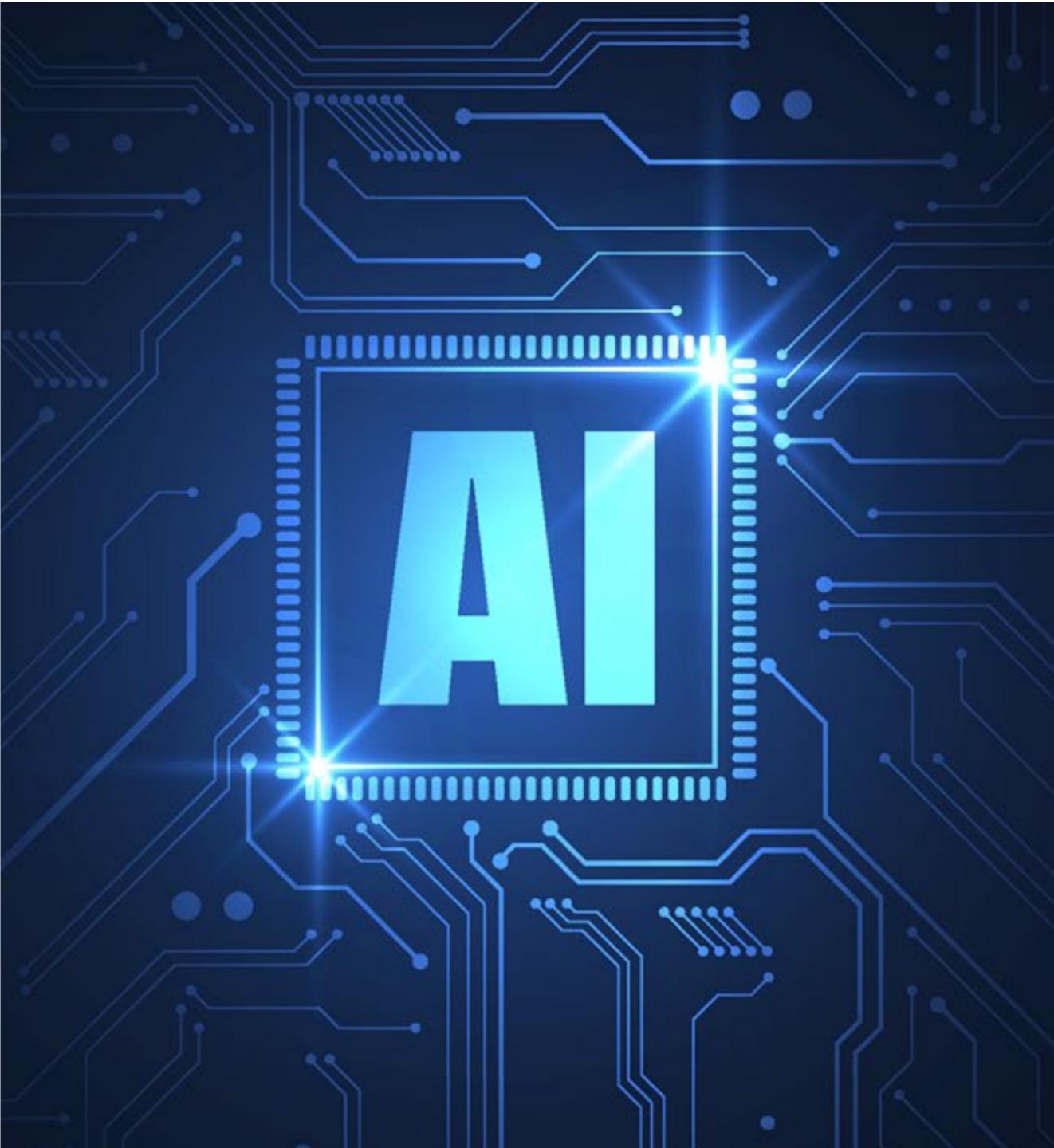
I really like how structured the labs are, and being able to see actual implementations of the techniques we learn about.

This is honestly one of the best set up courses I've taken at MIT

I love how we are using microntroller and focusing on application instead of just theories.

I managed the weekly labs and lectures by only watching the course on YouTube. As a researcher, I gained some valuable knowledge from your course. Excellent slides and teaching and useful labs.

I like the class and I have been able to follow the class easily (which had rarely happened to me in my previous courses)



MIT Al Hardware Program

MIT Microsystems Technology Laboratories (SoE)
MIT Quest for Intelligence – Corporate (SCC)

Co-Leads: Jesús del Alamo and Aude Oliva

Internal Advisory Board Chair: Anantha Chandrakasan

TinyML and Efficient Al

Sponsors:



Media:

Technology Review

VentureBeat

Science Daily

