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| Deep Learning Continues to Scale

The demand of computation grows exponentially
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| Model Compression and Efficient Al are Essential
Bridge the Gap between the Supply and Demand of Al Computing
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| Problem: DL Models Outgrow Hardware

Moore’s Law: 2x transistors every 2 years;
DL models: 4x parameters every 2 years
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l Model Compression Bridges the Gap

We need Green Al
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Model compression:
Pruning, sparsity, quantization, etc

“Deep Compression” and EIE brings new opportunity to build hardware accelerator for
sparse and compressed neural networks
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| Software is important in advanced technology node
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The software cost dominates the cost breakdown of advanced technology nodes [source].
We focus on designing new algorithms and software for efficient computing.
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https://www.researchgate.net/figure/Chip-Design-and-Manufacturing-Cost-under-Different-Process-Nodes-Data-Source-from-IBS_fig1_340843129

| Deep Compression
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Hardware Support for Sparsity

EIE (Efficient Inference Engine) brings weight sparsity to Al accelerators
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https://arxiv.org/pdf/1602.01528.pdf
https://arxiv.org/pdf/1612.00694.pdf
https://hanlab.mit.edu/projects/sparch/
https://spatten.mit.edu
http://hanlab.mit.edu/projects/pointacc

| #publications in pruning and sparsity
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The number of publications on neural network pruning and sparsity
quickly increased since 2015, including both algorithms and systems.

Source: https://github.com/mit-han-lab/pruning-sparsity-publications
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| Top-5 most cited papers in 50 years of ISCA

Rank Citations Year Title (# means it won the ISCA Influential Paper Award) First Author + HOF Authors
The SPLLASH-2 programs: Characterization and

1 5351 1995 Stephen Woo, Anoop Gupta Tool

methodological considerations

In-datacenter performance analysis of a Tensor Processing  Norm Jouppi, David

2 4214 12017 Unit Patterson Arch

3 1834 2000 Wa?tch: A fra.méwocrk for architectural-level power David quoks, Margaret Tool
analysis and optimizations Martonosi

4 1386 1993 Transactional memory: Architectural support for Maurice Herlihy Micro

lock-free data structures

5 600 12016 EIE: Efficient inference engine on compressed deep neural | Song Han, Bill Dally, Mark Arch
network Horowitz
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Machine
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Power
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Retrospective: EIE: Efficient Inference Engine on
Sparse and Compressed Neural Network

Song Hanl»3, Xingyu Liu%, Huizi Mao?, Jing Pu®, Ardavan Pedram?°, Mark A. Horowitz?, William J. Dally2’3,
IMIT 2Stanford 3 NVIDIA “*CMU ° Google © Samsung

The first principle of efficient Al computing is to be lazy: avoid redundant computation,
quickly reject the work, or delay the work.

* Generative Al: spatial sparsity [SIGE, NeurlPS’22]

* Transformer: token sparsity, progressive quantization [SpAtten, HPCA'21]
* Video: temporal sparsity [Tswm, Iccv'19]

* Point cloud: spatial sparsity [TorchSparse, MLSys’22 & PointAcc, Micro’22]

We envision future Al models will be sparse at various granularity and structures. Co-
designed with specialized accelerators, sparse models will become more efficient and
accessible.
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| Overview

Efficient deep learning computing
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| Overview

Efficient deep learning computing

scaling up

LargelLM
SmoothQuant
[ICML’23]
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| Overview

Efficient deep learning computing

scaling up

A N o A by’ N
TinyML LargelLM

MCUNet v1-v3 SmoothQuant

[NeurlPS’20/21/22] [ICML’23]
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| Overview

Efficient deep learning computing

Inference

t Pruning/Sparsity mrcazoz1, MLsys22, Micro™23]
Once-for-all [ICLR’20]

TinyML

MCUNet v1-v3 SmoothQuant

[NeurlPS’20/21/22] [ICML’23]
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| Overview

Efficient deep learning computing

Inference

t Pruning/Sparsity mrcazoz1, MLsys22, Micro™23]
Once-for-all [ICLR’20]

scaling up »
TinyML .
MCUNet v1-v3 PockEngine micro2s) SmoothQuant
[NeurlPS20/21/22) ICML23]

v

Training
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| Overview

Efficient deep learning computing

LargelLM

SmoothQuant
[ICML23]
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Efficient Large Language Models

LLM serving cost is extremely high

ChatGPT is at

capacity right now

Get notified when we're back

Write a rap about the status of ChatGPT.

Yeah, yo, what's up ChatGPT fam

A lot of people trying to jam

But don't worry, we got your back
Just check back soon, we'll get on track

ChatGPT's the place to be
For all your Al chat needs

We're working hard to keep up the pace

So hold tight, we'll be back in this space

So don't you worry, don't be mad

We're working hard, it's not so bad

Just give us time, we'll be back
ChatGPT, the future of chat, that's a fact.

Your Account

Free Plan

() Available when demand is low

() Standard response speed

() Regular model updates

ChatGPT Plus USD $20/mo

Upgrade plan

Due to high demand, we've
temporarily paused upgrades.

Priority access to new features
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| Quantization Can Reduce Deployment Costs

e Serving a 175B GPT-3 model at least requires:

e INT8: 175GB memory &4 3 x 80GB A100 GPUs .
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] SmoothQuant

Traditional Quantization Methods Degrades the Accuracy of LLM

75%

57 %
° Performance

48% degradation

0 ® FP16
39% WB8AS

Accuracy

30%
1.3B 2.7B 6./B 13B 30B 66B 175B

Model Size

- INT8 guantization has been an industry standard for CNNs, but not LLM.
- When model size > 7 Billion parameters, systematic outliers emerge.

- Traditional quantization methods destroy the accuracy.
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] SmoothQuant

Smoothing activation to reduce quantization error

Original

Absolute
Value

Weight
Hard to quantize \ery easy to quantize

Activation

- Weights are easy to quantize, but activation Is hard due to outliers

- Luckily, outliers persist in fixed channels
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SmoothQuant

Smoothing activation to reduce quantization error

Original

Absolute
Value

1000
2000
. 3000

5000 0

Activation Weight
Hard to quantize \ery easy to quantize
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] SmoothQuant

Smoothing activation to reduce quantization error

Smoothed

Original

Migrate the quantization
difficulty
o)

Absolute
Value

Weight Activation Weight

Activation
Easy to quantize Harder but still easy to quantize

Hard to quantize \ery easy to quantize

- Weights are easy to quantize, but activation Is hard due to outliers

- Luckily, outliers persist in fixed channels
- Migrate the guantization difficulty from activation to weights, so both are easy to quantize
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] SmoothQuant

Smoothing activation to reduce quantization error
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] SmoothQuant

Smoothing activation to reduce quantization error

W W = diag(s)W
2 1 -2 X =Xdiag(s)™ |2 1 -2
x [T 2 0l g 1 -4 2 2| |4 -4 -4
2 8 -1 -9 — 2
2 1 -2 2 2 -1 -3 2 1 -2
1 -1 1 3 -3 3

l

S; = max( XJ- )*/ max( Wj )1_0‘,]': 1,2,...,C.

Va\

Y = (Xdiag(s)™) - (diag(s)W) = XW
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| SmoothQuant

Efficient System Implementation

- All compute-intensive operators (Linears, BMMSs) are quantized

FP16 ()

( LayerNorm ) INTE = .

( LayerNorm )

( Soft_m ax )
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| SmoothQuant (W8AS)

Accurate and efficient quantization of various LLMs

e SmoothQuant well maintains the accuracy without fine-tuning.

e SmoothQuant can both accelerate inference and halve the memory footprint.

W m .
/J JEfa S momE =
L AMBADA Accuracy FP16 (8 GPUs) B SmoothQuant (4 GPUs)
900 848 400 369 372 378 389
OPT-1/5B BLOOM-1/6B GLM-130B o
675 . 300
FP16 71.6% 68.2% 73.8% A o
LC>; 450 432 2 200 182 | lhea | hse | 2
SmoothQuant  71.2% 68.3% 73.7% g o =
-
225 228144 I = 100
139199 I
NIl BN AN AN Deeeis AN AR AN |
128 256 512 1024 128 256 512 1024

OPT-175B
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| SmoothQuant (W8AS)

Scaling up: W8AS8 quantization of MT-NLG 530B

LAMBADA HellaSwag PIQA WinoGrande Average

MT-NLG 530B Accuracy FP16  76.6% 62.1% 81.0%  729%  73.1%
INT8  77.2% 60.4% 80.7%  741%  73.1%

Seqlen Prec.  #GPUs  Latency Memory

. 512 FP16 838ms  1068GB M Bl
MT-NLG 530B Efficiency INT8 (8 ) _839ms  545GB i
1024 FP16 16 1707ms  1095GB
INTS 3 1689ms  570GB

- SmoothQuant can accurately quantize MT-NLG 530B model and reduce the serving GPU numbers by half
at a similar latency, which allows serving the 530B model within a single node.
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| SmoothQuant (W8AS) y

Advancing new efficient open model LLaMA g

© SmoothQuant -

>

- LLaMA (and its successors like Alpaca) are popular open-
source LLMs, which introduced SwishGLU, making activation

quantization even harder

!
AT 5 - §
o int8 I

- SmoothQuant can losslessly quantize LLaMA families, further
lowering the hardware barrier

Wikitext PPL! LLaMA 7B LLaMA 13B LLaMA 30B LLaMA 65B

FP16 11.51 10.05 7.53 6.17

SmoothQuant 11.56 10.08 7.56 6.20
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| Industry & Community Impact

SmoothQuant is widely adopted by industry

 NVIDIA FasterTransformer

 NVIDIA TRT-LLM

 MLPerf 8-bit: closed the accuracy gap.

* Intel Neural Compressor / Q8-Chat on Xeon

* Ongoing efforts by Meta/Microsoft/Amazon/HuggingFace ...

< 4 "
rgnzm MLPerf INtel 0Q Meta B Microsoft aMazon (. Hugging Face

31
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|l W4A16 for Single Query Serving

WBS8AS8 cannot address low computational intensity of decoding

- WB8AS8 quantization is good for batch serving (e.g., batch size 128)
- But single-query LLM inference (e.g., local) is still highly memory-bounded
- We need low-bit weight-only quantization (e.g., W4A16) for this setting

TFLOPS3
312

« A100 GPU
 LLaMA-65B decoding

0) >
Compute intensity
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| AWQ: Activation-aware Weight Quantization

Observation: Weights are not equally important; 0.1% salient weights

Wee1s QW)mixprec OPT-6.7B Wiki-2 PPL|
+12|-02|-2.4/-3.4 +1] 40| =2 =3 50
~25|-3.5|+1.9|+1.4 —25|-3.5|+1.9]+1.4 40
—09|+1.6|-2.5|-1.9 “1| 42| =3 | =2
30
—35|+1.5[+05/—=0.1] RIN | _a| 42| +1] +0 0.1% FP16
>
+1.8|-1.6/-3.2|-3.4 +2 | =2 | =3 =3 20 help
+2.4|-3.5|-2.8|-3.9 42| -4 | 3| -4
10
+0.1|-3.8(+2.4|+3.4 40| —4 | 42| 43
+0.9|43.3(-1.9|-2.3 1] 43| —2| =2 0

FP16 RTN 0.1% FP16

- We find that weights are not equally important, keeping only 0.1% of salient weight channels in FP16
can greatly improve perplexity

- But how do we select salient channels? Should we select based on weight magnitude?
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| AWQ: Activation-aware Weight Quantization

Salient weights are determined by activation distribution, not weight

Q(W)wmixprec - OPT-6.7B Wiki-2 PPL |
+1| 40| =2| -3 small improve

X X

determine the salient
—251-35(+19|+14 40

“
-
“
4

-1 | +2| -3 | -2

—4 | 42| +1] +0 30 big
N P N o0 iImprove
_|_ — — —
+2| -4 | =3| -4
10
X +0 | —4 | +2 | +3
+1| +3 | -2| -2 0

FP16 RTN activation weight random

0.1% FP16 based on
- We find that weights are not equally important, keeping only 0.1% of salient weight channels in FP16

can greatly improve perplexity
- But how do we select salient channels? Should we select based on weight magnitude?

- No! We should look for activation distribution, but not weight!
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| AWQ: Activation-aware Weight Quantization

Protecting salient weights by scaling (no mixed prec.)

W

+12|-02|-2.4/-34| % 1 B Y - max( w )
—2.5|-3.5(+19[+14| X 2 Q(W) X=A4- ROUﬂd(X) "4 A= IN—-1
-09|+1.6|-25|-19| % 1 1

Q( ~35+1.5/+0.5/-0.1] X 1 Q(w - 5)(x/s) = A’- Round(ws/A") - x - ?
H18)716]732734) X 1 constant E(error) suppre_ss error
+2.4]-35|-2.8/-39 % 1 |
vo1s8|rzar3e] 1 A ~ A, RoundErr~0.25, s>1
+0.9|+3.3|-19/-23] % 1 tu/se to previous op Err(Q(w - 5)(x/s) B A1 -

WX — Q(W -s)(s~ - X) Err(Q(w) - x) A s

- Multiplying the salient channels with s > 1 reduces its quantization error

- Skip mathematical derivation for now
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| Industry & Community Impact

 SmoothQuant
 NVIDIA FasterTransformer
 NVIDIA TRT-LLM
 MLPerf 8-bit: closed the accuracy gap.
* Intel Neural Compressor
* Ongoing efforts at Meta/Microsoft/Amazon/HuggingFace ...

« AWQ
« AWAQ is integrated by FastChat, vLLM, HuggingFace TGI, and LMDeploy.
 Check out AutoAWQ, a third-party implementation to make AWQ easier to expand to new
models, improve inference speed, and integrate into Huggingface

< /LLM

NVIDIA.

- Hugging Face
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https://github.com/lm-sys/FastChat/blob/main/docs/awq.md
https://github.com/vllm-project/vllm/blob/main/vllm/model_executor/quantization_utils/awq.py
https://github.com/huggingface/text-generation-inference/pull/1054
https://github.com/InternLM/lmdeploy
https://github.com/casper-hansen/AutoAWQ

TinyChat _.... e

- Deploying LLM on the edge Is useful: running copilot
services (code completion, office, game chat) locally
on laptops, cars, robots, and more.

- resource-constrained, low-power and sometimes do
not have access to the Internet.

- Data privacy Is important. Users do not want to share
personal data with large companies.

S 1E AN




| TinyChat: A Lightweight Serving Infra

Pythonic, lightweight, efficient

* We need a framework to serve the quantized model to achieve low latency (AWQ only for
Linears)
* HuggingFace: easy to use, but slow
* Fasterlransformer: high efficiency, but harder to use

Efficiency

FasterTransformer
@

S

Ease of use

e HuggingFace | =
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| TinyChat: A Lightweight Serving Infra

Pythonic, lightweight, efficient

* We need a framework to serve the quantized model to achieve low latency
* HuggingFace: easy to use, but slow
* Fasterlransformer: high efficiency, but harder to use

* TinyChat goals: efficient, lightweight, Python-native (composable with other stacks like
vLLM)

Efficiency e

FasterTransformer . r('.i‘,,!- m ‘, Ti nyc h o 'I'

S

Ease of use

e HuggingFace | =
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- We enable edge deployment of LLMs through quantization: SmoothQuant and AWQ

- TinyChatEngine implements the compressed inference, built from C/C++ from scratch, easy to install and migrate
to edge platforms

(TinyChatEngine) raymondwang@Raymonds-MacBook-Air-2 1lm % ./chat
Using model: LLaMA2_7B_chat

Using data format: AWQ INT4 Outher | X I | W I
Loading model... Finished! wn 10 \-v 0.1 ~ —
USER: >
E low effective bits
E )
& 0 . 0 .
hard to quantize very easy to quantize
(a) Original
igrate difficulty
smoothed |5‘( | Tigta |W|
. 1 \\’ ////’;*\\\‘
Q
z \/\/\N\/\/\/ \A/\/WW
9
g
S . 0 :
easy to quantize easy to quantize

(b) SmoothQuant (ours)
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l Improving Multi-Modal LLMs

JI’'s internship project at NVIDIA Research (WIP)

 AWQ makes multi-modal LLM efficient
* But the current open-source multi-modal LLMs have poor visual-language alignment

Question: Is the man wearing eyeglasses”?

LLava-7B: Yes, the man is wearing eyeglasses.
MiniGPT-4-7B: Yes, the man is wearing eyeglasses.
VPGTrans-7B: Yes, the man is wearing eyeglasses.

LLama-Adapter-V2-7B. Yes, the man is wearing
eyeglasses in the image.
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l Improving Multi-Modal LLMs

Improving PaLM-E alike Vision Language Models (VLM)

* We study PaLM-E alike architecture due to its flexibility for multi-modal input/output
* Visual input as a foreign language
 Goal: good performance on both visual-language and text-only

A2

LLM > A flamingo is in the image.
T A
[ projectorﬁ) embed

What is in the image?

T\
VIT

% I

}'f:\v

E; 44»&———'7 = i%
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l Improving Multi-Modal LLMs

Improving PaLM-E alike Vision Language Models (VLM)

* We study PaLM-E alike architecture due to its flexibility for multi-modal input/output
* Visual input as a foreign language
* Goal: Multi-modal LLM with good visual-language performance and text-only performance

A2

'_ -----------------

LLM J > A flamingo is in the image. . text-only :
T +  pre-training
T A
[ projectort}) embed

What is in the image?

T
% VIT  \
| T ~ visual-text
= instruction tuning

e =l
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Improving Multi-Modal LLMs

Qualitative results

* |CL example (counting)

Pred: cats: 3

pandas: 3

context prediction
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l Improving Multi-Modal LLMs

Qualitative results

* |CL example (world knowledge)

=" Microsoft

S

Google

The company is The company is
famous for its famous for the
search engine. operating system.

A

—

The company is
famous for

IPhone and Mac.

=
NVIDIA.

S

Pred: The company is
famous for its graphics
processing units (GPUSs)
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l Improving Multi-Modal LLMs

Qualitative results

* \We can use the model to explain self-driving scenarios (zero-shot)

Q: Can the vehicle proceed through the traffic now?

A: Based on the image, the vehicle cannot proceed
through the traffic yet. There are multiple people and
bicycles in the crosswalk, and the traffic light is red. The
vehicle must wait for the traffic light to turn green before
proceeding.
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l Improving Multi-Modal LLMs

Qualitative results

* Explaining an NVIDIA meme

Q: Can you explain the meme?

A: The meme depicts a man's reaction to the price of a
computer graphics card. In the first image, the man is smiling
and appears excited about the product. In the second image, he
Is shocked and disappointed by the high price of the graphics
card, which is $1,200. The meme is a playful representation of
the contrast between the man's initial enthusiasm and his
subsequent disappointment upon learning the cost of the
product.
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| SpAtten: Transformer with Sparse Attention

Token Pruning: not every token is equally important. Prog

As a visual treat, the film is almost perfect.
11 Tokens 8 Heads

: , 0.30
BERT Layer 1 (100% Computation & Memory Access) be’lt I m :
they 10 ¢ Il 0 E 0z |
As treat, film perfect. video{ | | | : 5
6 Tokens | 5 Heads L] : . - E
Layer 2 (34%) IOat LE . = ors |
1! . =
. Iy : =
film perfect m?&ﬁ oy ;o : 010 | B
2 Tokens | 4 Heads thani « | - n <
Layer 3 (9%) theq E : .. ) : - 0.05
Sentiment Classification: Positive Qgél_o'gég 12171004 160619 1403 010 04 < y

Remove redundant token and head according to cumulative importance

ressively prune them.
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| SparseViT: Token Pruning for ViTs

Sparse high-resolution features are better than dense low-resolution ones

Higher Resolution (1.0x), Sparse (25%)

32

31

30

Detection mAP

29

28

3D Monocular Object Detection (huScenes)

—__. )SXFaster |
SparseViT
Baseline
(R256, W1x)
1.3% E
Higheri
R192
16 20.4 24.8 29.2 33.6 38

Latency (ms)

- 1.5X faster than the baseline without loss of accuracy.
- 1.3% higher mAP than the baseline with reduced resolution.
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| SparseRefine: Pixel Pruning for CNN

sparse high-resolution + dense low-resolution

Input Image Dense Low-Resolution Inference

Jo

Any off-the-shelf model (Frozen)

x
* ....... Mean IoU." 80.9

80.7

E—
Resize

''''
v, *
., ' o* T
.

Entropy |* g
Selector Sparse High-Resolution Inference 2
g
<
—
- EE -
Sparse Feature e
Sparse Pixels Extractor Sparse Refinement Ensembler Final Prediction High Res. Low Res. Low Res. +

(1024%2048) (512x1024) SparseRefine

Enabled by TorchSparse

Tang et al. [MICRO’23]
Tang et al. [MLSys’22]
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| Lite Transformer

Specialization: Convolution (local feature) + Attention (global feature)

Original Attention

(Too much emphasize on
ocal feature extraction)

"3 8 tte
mOE O Q
£S5 S > o N
3 =0 (o) q—"_c:q_') Jlel
o) L (@)
O 0OMOwS OL WM jf(
0.30

it

requires
enormous -
amount-
of 1
resources-
to-
achieve-
high-
scores-

0.25

0.20

0.15

-0.10

-0.05

Attention in LSRA

(Dedicated for global
feature extraction)
g n
$og © ¢
= E 5 3 5 $
562 @ E50
2296588823
it il
requires{ B B
enormous )
amount - B H =
of - L
resources : |
to i
achieve
high I O
SCOores- .

lture extract

0.25

0.20

0.15

-0.10

- 0.05

rt-range) features.

160

Model Size (MB)
o0
S

| FEN
2
D
Embedding
_
FC
Conv
5 Local
GLU Extractor
e,
on.. o
. —\ 43
39,._9 Qﬁ 39{9 35 5 18.2X _
\ 602 39 5
C
\ 9.7 \/
[ ] 35
Transformer Lite Transformer +Quant (8 bits) +Quant (8 bits)
(Ours) +Pruning
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| HAT: Hardware Aware Transformer

Specialization: design different transformer architecture tailored for different hardware

O HAT (Ours) Layer Number Scaling of Transformer (Vaswani et al.) {1 Dimension Scaling of Transformer (Vaswani et al.)
& e T f Bi
| ransformer-Big Ry I
SuperTransformer iy :
P ° 28 e 28 ,
< tr ~~ Transformer-Big 4
2 0x Faster kL \ 2.7% Faster /:
27 ,' 27 :

. Transformer-Base Transformer-Base
’

5 26

Evolutionary Search with
Hardware Constraints 26 1

. ’ A [
SubTransformers (Weight-Sharing) . ' » Dimension scaling
25 Hon g 25 Hin can hardly reduce latency/,
q . on Nvidia GPU [':I
:><: % ot “ - WMT "14 En-De ot . -WMT 14 En-De
@ 100 234 368 501 635 50 101 153 204 255
Specialized Deployment is Efficient Intel CPU latency (ms) Nvidia GPU latency (ms)
29
Atiention FLOPs , _1.0x Faster -
' ato: 1. 0 >8xSmallel. —om----""
Different Hardware 1L Hﬁart";";]’i‘;e 28 2 PETTEL T i /
)) — — YN Feedback & - Vanilla Transformer-Big
= = 1S 3 27 '
TIT o N + Vanilla Transformer-Base
2 4 + Attention FLOPs Ratio: 1.07%
loT CPU GPU 26 ;
TinyML Deeper Wider m >
. . ! . O Co-designed Transformers for SpAtten
Search for most efficient Transformer model with hardware feedback 25 ‘ ) . 1T =p
O Layer Number Scaling of Vanilla Transformer
24 11 Dimension Scaling of Vanilla Transformer
1 4 ! 10

SpAtten Latency (ms) 53
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| Spatially Sparse Inference for Diffusion Models
Qualitative Results of SIGE on Stable Diffusion

A photograph of a horse on a grassland.

.
x| =
& "

B d
Nk ’ 1 v
- ’ 9 » 4
) ‘ : y R .
- - i Sad -
&4 o :
A
o o £ >~

Stable Diffusion: Ours:
1855GMACs 369ms 514G (3.6X) 95.0ms (3.9X)

Image Inpainting

Latency Measured on NVIDIA RTX 3090 ()R
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| Fast Composer

To run the demo, you should:
1. Upload your images. The order of imagel and image2 needs to match the order of the subects in the prompt. You only need 1 image for single subject generation.

2. Input proper text prompts, such as “Awoman img and a man img in the snow” or “A painting of a man img in the style of Van Gogh”, where “img” specifies the token you want to augment and comes after the word.

3. Click the Run button. You can also adjust the hyperparameters to improve the results. Look at the job status to see if there are any errors with your input.

S = vl
[4 Imagel 2| (% X
= Examples
4 Image2 21 x
/4 L
‘= Examples

Job Status

Upload the image for your subject run successfully

Prompt

Use "img" to specify the word you want to augment.
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| MCUNet for TinyML

Advancing object detection by allowing a larger resolution

* Resolution is more important for detection than classification
* Our method significantly improves objection detection by double digits

Face/mask detection Person detection

OpenMV Cam: 512KB SRAM + 2MB Flash
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| Can We Learn on Edge?

Al systems need to continually adapt to new data collected from the sensors

-On-device learning: better privacy, lower cost, customization, life-long learning

- Training Is more expensive than inference, hard to fit edge hardware (limited memory)

Cloud-based Learning

On-device Learning

r "
'y ||||
L=J

>
New and Sensitive
Data

User Intelligent Edge Devices Cloud rr

X—
data cannot be sent to the %
cloud for privacy reason
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| On-Device Training Under 256KB Memory

1. Quantization-aware 2. Sparse layer/tensor 3. Tiny Training
scaling update Engine

~ _ _ —2

TensorFlow (cloud)

PyTorch (cloud)

MNN (edge)

Tiny Training Engine
+ Quantization-aware scaling
+ Sparse layer/tensor update
+ Operator reordering

0.1

1250KB constraint

652 MB
41.5 MB
, 5.7 MB < 2 3y

'—Q'QMB 1 2.0x
AiKB < 8.8x ]
& K<B 2.4

< 2300x
MB 1 MB 10 MB 100 MB



https://efficientml.ai

I PockEngine: Sparse and Efficient Fine-tuning in a Pocket
Finetune Llama-7B on edge device (to appear at MICRO’23)

Sparse tensor backpropagation

Backpropagate to the very first layer Sparse layer backpropagation
(a) Full BP (b) Last-only BP (c) Bias-only BP (d) Sparse BP
Input: Micro was running virtually online in 2021, and held
: physically at Chicago in 2022 and will soon be hosted in
Framework Method Iteration Alp aca-Eval Toronto in 2023. Now is the year of 2023, where was Micro
Latency (]) Winrate(T) hosted last year?
LlamaV2-7B-original: Micro was hosted virtually in 2021
PyTorch FI-Full 778 it LlamaV2-7B-tuned (Full-BP): Micro was hosted physically
PyTorch LoRA (rank=38) 7.3s 43.1% in Chicago in 2022.
PockEngine FT-Full 1 8s 43 79, Llan.laVZ.-7B-tuned (Sp.arse-BP): Based on .the mformétlon
, provided, it seems that Micro was hosted physically at Chicago
PockEngine Sparse 0.9s 43.1% 9092
Example 5. Inferring Information Based on Context.
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I PockEngine: Sparse and Efficient Fine-tuning in a Pocket
Finetune Llama-7B on edge device (to appear at MICRO’23)

Input: Lee mows one lawn and charges $33. Last week he
mowed 16 lawns and three customers each gave him a $10 tip.
How many dollars did Lee earn mowing lawns last week?
LlamaV2-7B-original: Lee earned $660 from mowing lawns
last week.

LlamaV2-7B-tuned (Full-BP): Lee earned $33 x 16 = $528
from mowing lawns. His total earnings from the 16 customers
who gave him a $10 tip is $10 x 3 = $30. Therefore, Lee earned
a total of $528 + $30 = $558 last week mowing lawns.
LlamaV2-7B-tuned (Sparse-BP): To determine how much
Lee earned mowing lawns last week, we need to calculate the
total amount of money he earned from mowing lawns and
tips. Lee mowed one lawn and charged $33, so he earned $33
from that lawn. Last week, Lee mowed 16 lawns, and three
customers each gave him a $10 tip, so he earned $10 x 3 = $30
in tips from those lawns and earned $33 from mowing one
lawn and total 16 lawns = $528. Therefore, Lee earned $558
last week from mowing lawns and receiving tips.

Example 6. Math Problem Solving
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O Product v Team Enterprise Explore v Marketplace Pricing

EH mit-han-lab / mcunet ' public

<> Code () Issues 6 {9 Pull requests g () ' 1 _DProi 0 i ~

O Product ¥ Team Enterprise Explore v Marketplace Pricing - Search

¥ master ~ ¥ 2 branches © 0 tags

H mit-han-lab [ tinyengine ' public 2\ Notifi

README.md

€% Godla @ — ¥ Pull requests @ P ] m|t-han-|ab/tmy-trammg Public <z Edit Pins ~ & Unwatch 8 ~ % Fork 0 . ¥y Star 65 v

MCUNet: Tiny Deeg

<> Code () Issues 1 {9 Pullrequests () Actions [ Projects [ Wiki (@ Security [~ Insights 3 Settings

o S . ¥ master ~ ¥ 1branch © 0 tags
This is the official implementation of th

= README.md ¥ main ~ ¥ 1branch © 0 tags Go to file Add file ~ <> Code ~ About £3
website | paper | paper (v2) | d¢ On-Device Training Under 256KB
TinyEng ine @ Lyken17 Merge branch 'main' of https://github.com/mit-han... f8dfb50 yesterday 'CL) 4 commits Memory [NeurlPS'22]
™ algorithm prepare open source 2 days ago ¢ tinytraining.mit.edu
This is the official implementation of TinyEngine, i B compilation prepare open source 2 days ago edge-ai  on-device-training
Microcontrollers. TinyEngine is a part of MCUNet, __ . . . ERAING=RnkneaHYe
B figures refine gas_accuracy figure yesterday
co-design framework for tiny deep learning on mi ol —
. [ .gitignore prepare open source 2 days ago
tight memory budgets. oy BT ligense
[ .gitmodules prepare open source 2 days ago & 55 s
The MCUNet and TinyNAS repo is here. el
[ LICENSE prepare open source 2 days ago ® 8 watching
: ¥ 0 forks
MCUNetV1 I MCUNGtVZ I MCUNetV3 [ README.md minor update yesterday
B3 assets prepare open source 2 days ago
&3 configs prepare open source 2 days ago Releases
No releases published
. Create a new release
‘— README.md V4

Sign up here to get updates!
https://forms.gle/UW1uUmnfk1k6UJPPA On-Device Training Under 256KB Memory packages

No packages published
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I EfficientML.ai Course TinyML and Efficient Al Computing

Efficient Inference
pruning, quantization, neural CS
architecture search, distillation

Efficient Training

gradient compression, on-device Algorithm
training, federated learning

Application-Specific

Optimizations
LLM, AIGC, video, point-cloud

97 registered + 40 listeners Al+D
89K views on YouTube +

/00 students in the open study group on Discord
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| EfficientML.ai Course

TinyML and Efficient Deep Learning Computing

6.5940 - Fall 2023 - MIT

Large generative models (e.g., large language models, diffusion models) have shown remarkable performance, but
they require a massive amount of computational resources. To make them more accessible, it is crucial to improve
their efficiency.

This course will introduce efficient Al computing techniques that enable powerful deep learning applications on
resource-constrained devices. Topics include model compression, pruning, quantization, neural architecture search,
distributed training, data/model parallelism, gradient compression, and on-device fine-tuning. It also introduces '
application-specific acceleration techniques for large language models, diffusion models, video recognition, and point
cloud. This course will also cover topics about quantum machine learning. Students will get hands-on experience

This is honestly one of the best set up courses I've taken at MIT

| really like how structured the labs are, and being able to see actual implementations of the techniques we

deploying large language models (e.g., LLaMA 2) on a laptop. learn about.
|
o Time: Tuesday/Thursday 3:30-5:00 pm Eastern Time | managed the weekly labs and lectures by only watching the course on YouTube. As a researcher, | gained
« Location: 36-156 some valuable knowledge from your course. Excellent slides and teaching and useful labs.

o Office Hour: Thursday 5:00-6:00 pm Eastern Time, 38-344 Meeting Room |
e Discussion: Discord

e Homework submission: Canvas

o Online lectures: The lectures will be streamed on YouTube.

o Resources: MIT HAN Lab, HAN Lab Github, TinyML, MCUNet, OFA, SmoothQuant l

| love how we are using microntroller and focusing on application instead of just theories.

e Contact:
o Students can ask all course-related questions on Discord. | like the class and | have been able to follow the class easily (which had rarely happened to me in my
o For external inquiries, personal matters, or emergencies, you can email us at efficientmi-staff@mit.edu. previous courses)
o If you are interested in getting updates, please sign up here to join our mailing list to get notified! . | — —

https://efficientml.ai
63
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PYTHRCH

Lab O: Tutorial
on PyTorch

® 6 0 O
@ O
® ¢ 0 @

Lab 3:
Neural Architecture
Search

| EfficientML.ai Hands-on Labs

Lab 1:
Pruning

Lab 4:
LLM Compression

https://efficientml.ai

Lab 2:
Quantization

# 4 TinyChat

Lab 5:
On-Device LLM
Deployment
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MIT Microsystems Technology Laboratories (SoE)
MIT Quest for Intelligence — Corporate (SCC)

Co-Leads: Jesus del Alamo and Aude Oliva

Internal Advisory Board Chair: Anantha Chandrakasan
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-

Hardware, Al and Neural nets

Q github.com/mit-han-lab

& voutube.com/c/MITHANLab
@ songhan.mit.edu

e
myML and Efficient Al Computing 3 :

o /
"‘t'
.

tinyml.mit.edu
. IR QUALCOMMN @ £ XILINX maxim
SPONSOTrS: ===7= ( , AVIDIA @.ntegrated
=
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Media: E“%igg;ogv liSpecTrum MIBEEE enoodoer [N VentureBeat
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