
Model Compression for
Efficient AI Computing
From TinyML to Large Language Model and GenAI

Generated by Midjourney

…

… …

…Song Han

https://songhan.mit.edu

Associate Professor, MIT

Distinguished Scientist, NVIDIA

@SongHan_MIT

https://efficientml.ai

Song Han: Slide Title https://efficientml.ai

Prof. Song Han

2

• B.S. from Tsinghua University
• Ph.D. from Stanford University, advised by Prof. Bill Dally
• Deep Compression (best paper award of ICLR)
• EIE (top5 cited paper in 50 years of ISCA) 

• Cofounder of DeePhi (now part of AMD)
• Cofounder of OmniML (now part of NVIDIA)

Beijing Stanford
Boston

• MIT Technology Review, 35 Innovators under 35
• NSF Career Award
• IEEE “AIs 10 to Watch: The Future of AI” Award
• Sloan Research Fellowship

https://efficientml.ai

Song Han: Slide Title https://efficientml.ai

Deep Learning Continues to Scale
The demand of computation grows exponentially

3

0.01

0.1

1

10

100

1000

2017 2018 2020 2021 2022

Model SizeGPT
0.11B

MegatronLM
8.3B

GPT-2
1.5B

M
od

el
 S

iz
e

(#
P

ar
am

s
in

 B
ill

io
n)

BERT
0.34B

Transformer
0.05B

GPT-3
175B

MT-NLG
530B

T-NLG
17B

Data format: FP16

https://efficientml.ai

Song Han: Slide Title https://efficientml.ai

Model Compression and Efficient AI are Essential
Bridge the Gap between the Supply and Demand of AI Computing

5

0.01

0.1

1

10

100

1000

2017 2018 2020 2021 2022

Model Size
GPU MemoryGPT

0.11B

MegatronLM
8.3B

GPT-2
1.5B

M
od

el
 S

iz
e

(#
P

ar
am

s
in

 B
ill

io
n)

BERT
0.34B

Transformer
0.05B

GPT-3
175B

MT-NLG
530B

T-NLG
17B

TPUv2
16GB

V100
32GB

TPUv3
32GB

A100
40GB

A100
80GB

Model
Compression

Data format: FP16

https://efficientml.ai

Song Han: Slide Title https://efficientml.ai

Problem: DL Models Outgrow Hardware
Moore’s Law: 2x transistors every 2 years;
DL models: 4x parameters every 2 years

4

0.01

0.1

1

10

100

1000

2017 2018 2020 2021 2022

Model Size
GPU MemoryGPT

0.11B

MegatronLM
8.3B

GPT-2
1.5B

M
od

el
 S

iz
e

(#
P

ar
am

s
in

 B
ill

io
n)

BERT
0.34B

Transformer
0.05B

GPT-3
175B

MT-NLG
530B

T-NLG
17B

TPUv2
16GB

V100
32GB

TPUv3
32GB

A100
40GB

A100
80GB

Data format: FP16

208V, 50Amp:

2x NVIDA DGX A100

or

1x NVIDA DGX H100

15KW!

https://efficientml.ai

Song Han: Slide Title https://efficientml.ai

Model Compression Bridges the Gap
We need Green AI

6

“Deep Compression” and EIE brings new opportunity to build hardware accelerator for
sparse and compressed neural networks

https://efficientml.ai

Song Han: Slide Title https://efficientml.ai

Software is important in advanced technology node

7

The software cost dominates the cost breakdown of advanced technology nodes [source].

We focus on designing new algorithms and software for efficient computing.

https://efficientml.ai
https://www.researchgate.net/figure/Chip-Design-and-Manufacturing-Cost-under-Different-Process-Nodes-Data-Source-from-IBS_fig1_340843129

Song Han: Slide Title https://efficientml.ai

Deep Compression

8

Original ResNet-50

with Deep Compression

100MB

6MB 17x compression

Quantization

pruning
neurons

pruning
synapses

after pruningbefore pruning

pruning
neurons

pruning
synapses

after pruningbefore pruning

Pruning

https://efficientml.ai

Song Han: Slide Title https://efficientml.ai

Hardware Support for Sparsity
EIE (Efficient Inference Engine) brings weight sparsity to AI accelerators

9

EIE, Han et al, ISCA’16 ESE, Han et al, FPGA’17 SpArch, Wang et al, HPCA’20

NVIDIA Ampere Architecture
SpAtten, Wang et al, HPCA’21 PointAcc, Lin et al, Micro’21

https://efficientml.ai
https://arxiv.org/pdf/1602.01528.pdf
https://arxiv.org/pdf/1612.00694.pdf
https://hanlab.mit.edu/projects/sparch/
https://spatten.mit.edu
http://hanlab.mit.edu/projects/pointacc

Song Han: Slide Title https://efficientml.ai

#publications in pruning and sparsity

10

The number of publications on neural network pruning and sparsity
quickly increased since 2015, including both algorithms and systems.  

Source: https://github.com/mit-han-lab/pruning-sparsity-publications

Pu

bl
ic

at
io

ns

0

800

1600

2400

3200

1989 1992 1995 1998 2001 2004 2007 2010 2013 2016 2019 2022

#publications on pruning and sparse neural networks

Optimal

Brain Damage

Deep
Compression

EIE

https://efficientml.ai
https://github.com/mit-han-lab/pruning-sparsity-publications

Song Han: Slide Title https://efficientml.ai

Top-5 most cited papers in 50 years of ISCA

11

Rank Citations Year Title (means it won the ISCA Influential Paper Award) HOF Authors Type Topic★ First Author +

1 5351 1995 Stephen Woo, Tool Benchmark

2 4214 2017 Arch Machine
Learning

3 3834 2000 Tool Power

4 3386 1993 Maurice Herlihy Micro Parallelism

5 2690 2016 Song Han Arch Machine
Learning

6 2620 2007 Xiaobo Fan, Micro Power

7 2507 1992 Thorsten von Eiken Micro Parallelism

8 2391 2011 Micro Parallelism

9 2352 1995 Micro Parallelism

10 2243 1990 Micro Cache

11 1801 2009 Benjamin Lee, Micro NV RAM

12 1790 1990 Micro Consistency/
Coherence

13 1769 2009 Micro NV RAM

14 1659 2016
Ali Shafiee,

Arch Machine
Learning

15 1643 2003 Kevin Skandron Micro Power

16 1557 2016 Yu-Hsin Chen, Micro Machine
Learning

17 1420 2016 Arch Machine
Learning

18 1401 2014 Andrew Putnam Micro Interconnect

19 1374 1992 Christopher Glass Micro Interconnect

20 1350 1995 Micro Parallelism

21 1302 2000 Andrew Putnam, Micro Parallelism

22 1284 1997 Subbarao Palacharla, Micro Parallelism

23 1221 2002 Krisztián Flautner, Micro Power

24 1210 1996 Micro Parallelism

25 1201 1997 Micro Parallelism

The SPLASH-2 programs: Characterization and
methodological considerations
In-datacenter performance analysis of a Tensor Processing
Unit

EIE: Efficient inference engine on compressed deep neural
network

Active messages: a mechanism for integrated
communication and computation

Dark silicon and the end of multicore scaling

Architecting phase change memory as a scalable DRAM
Alternative

Memory consistency and event ordering in scalable
shared-memory multiprocessors

Scalable high performance main memory system using
phase-change memory technology

ISAAC: A convolutional neural network accelerator with
in-situ analog arithmetic in crossbars

Eyeriss: A spatial architecture for energy-efficient
dataflow for convolutional neural networks
Prime: A novel processing-in-memory architecture for
neural network computation in ReRAM-based main
memory
A reconfigurable fabric for accelerating large-scale
datacenter services

The turn model for adaptive routing

Multiscalar processors

Memory access scheduling

A Study of Branch Prediction Strategies

Anoop Gupta

Norm Jouppi, David
Patterson
David Brooks, Margaret
Martonosi

, Bill Dally, Mark
Horowitz

Luiz Barroso

Hadi Esmaeilzadeh, Doug
Burger, Karthikeyan
Sankaralingam

Norm Jouppi

Doug Burger,
Engin Ipek, Onur Mutlu
Kourosh Gharachorloo,
Anoop Gupta, John
Hennessy

Moinuddin Qureshi

Rajeev
Balasubramonian, Naveen
Muralimanohar

Joel Emer

, Hadi
Esmaeilzadeh

Guri Sohi, T. N. Vijaykumar

Bill Dally

Norm
Jouppi, Jim Smith

Nam
Sung Kim, Trevor Mudge
Hank Levy, Susan Eggers,
Joel Emer, Dean Tullsen
Jim Smith

★Wattch: A framework for architectural-level power
analysis and optimizations

Transactional memory: Architectural support for
lock-free data structures

Power provisioning for a warehouse-sized computer

Simultaneous multithreading: Maximizing on-chip
parallelism

Improving direct-mapped cache performance by the
addition of a small fully-associative cache and prefetch
buffers

Temperature-aware microarchitecture

Complexity-effective superscalar processors

Drowsy caches: simple techniques for reducing leakage
power

Exploiting choice: Instruction fetch and issue on an
implementable simultaneous multithreading processor

★

★

★

★

★

★

★

★

Dean Tullsen, Susan Eggers,
Hank Levy

Yuan XiePing Chi,

https://efficientml.ai

Song Han: Slide Title https://efficientml.ai

The first principle of efficient AI computing is to be lazy: avoid redundant computation,
quickly reject the work, or delay the work.

• Generative AI: spatial sparsity [SIGE, NeurIPS’22]

• Transformer: token sparsity, progressive quantization [SpAtten, HPCA’21]

• Video: temporal sparsity [TSM, ICCV’19]

• Point cloud: spatial sparsity [TorchSparse, MLSys’22 & PointAcc, Micro’22]

We envision future AI models will be sparse at various granularity and structures. Co-
designed with specialized accelerators, sparse models will become more efficient and
accessible.

12

https://efficientml.ai

Song Han: Slide Title https://efficientml.ai

Overview
Efficient deep learning computing

13

https://efficientml.ai

Song Han: Slide Title https://efficientml.ai

Overview
Efficient deep learning computing

14

scaling up

LargeLM
SmoothQuant

[ICML’23]

https://efficientml.ai

Song Han: Slide Title https://efficientml.ai

Overview
Efficient deep learning computing

15

scaling upscaling down

TinyML LargeLM
SmoothQuant

[ICML’23]
MCUNet v1-v3

[NeurIPS’20/21/22]

https://efficientml.ai

Song Han: Slide Title https://efficientml.ai

Overview
Efficient deep learning computing

16

scaling upscaling down

TinyML LargeLM

Inference

SmoothQuant

[ICML’23]

Pruning/Sparsity [HPCA’20/21, MLSys’22, MICRO’23]

Once-for-all [ICLR’20]

MCUNet v1-v3

[NeurIPS’20/21/22]

https://efficientml.ai

Song Han: Slide Title https://efficientml.ai

Overview
Efficient deep learning computing

17

scaling upscaling down

TinyML LargeLM

Inference

Training

SmoothQuant

[ICML’23]

Pruning/Sparsity [HPCA’20/21, MLSys’22, MICRO’23]

Once-for-all [ICLR’20]

MCUNet v1-v3

[NeurIPS’20/21/22]

PockEngine [MICRO’23]

https://efficientml.ai

Song Han: Slide Title https://efficientml.ai

Overview
Efficient deep learning computing

18

scaling upscaling down

TinyML LargeLM
SmoothQuant

[ICML’23]

Inference
Pruning/Sparsity [HPCA’20/21, MLSys’22, MICRO’23]

Once-for-all [ICLR’20]

Training

PockEngine [MICRO’23]MCUNet v1-v3

[NeurIPS’20/21/22]

https://efficientml.ai

Song Han: Slide Title https://efficientml.ai

Efficient Large Language Models
LLM serving cost is extremely high

19

https://efficientml.ai

Song Han: Slide Title https://efficientml.ai

Quantization Can Reduce Deployment Costs

• Serving a 175B GPT-3 model at least requires:

• FP16: 350GB memory ➡ 5 x 80GB A100 GPUs

• INT8: 175GB memory ➡ 3 x 80GB A100 GPUs

20

https://efficientml.ai

Song Han: Slide Title https://efficientml.ai

SmoothQuant
Traditional Quantization Methods Degrades the Accuracy of LLM

21

- INT8 quantization has been an industry standard for CNNs, but not LLM.

- When model size > 7 Billion parameters, systematic outliers emerge.

- Traditional quantization methods destroy the accuracy.

21

Ac
cu

ra
cy

30%

39%

48%

57%

66%

75%

Model Size
1.3B 2.7B 6.7B 13B 30B 66B 175B

FP16
W8A8

Performance
degradation

https://efficientml.ai

Song Han: Slide Title https://efficientml.ai

SmoothQuant
Smoothing activation to reduce quantization error

22

- Weights are easy to quantize, but activation is hard due to outliers

- Luckily, outliers persist in fixed channels

22

Activation

A
bs

ol
ut

e
Va

lu
e

70

Hard to quantize
Weight

Very easy to quantize

Original

https://efficientml.ai

Song Han: Slide Title https://efficientml.ai

SmoothQuant
Smoothing activation to reduce quantization error

2323

Activation

A
bs

ol
ut

e
Va

lu
e

70

Hard to quantize
Weight

Very easy to quantize

Original

X0.1 X10

https://efficientml.ai

Song Han: Slide Title https://efficientml.ai

SmoothQuant
Smoothing activation to reduce quantization error

24

- Weights are easy to quantize, but activation is hard due to outliers

- Luckily, outliers persist in fixed channels

- Migrate the quantization difficulty from activation to weights, so both are easy to quantize

24

Activation Weight

A
bs

ol
ut

e
Va

lu
e

70

Hard to quantize
Weight

Very easy to quantize
Activation

Easy to quantize Harder but still easy to quantize

Migrate the quantization
difficulty

Original Smoothed

Q(W ⋅ X) → Q(W ⋅ s)(s−1 ⋅ X)

https://efficientml.ai

Song Han: Slide Title https://efficientml.ai

SmoothQuant
Smoothing activation to reduce quantization error

2525

sj = max(� Xj �)α / max(� Wj �)1−α, j = 1,2,…, Ci

Y = (Xdiag(s)−1) ⋅ (diag(s)W) = X̂Ŵ

1 4 1 3s

X

W

1 -16 2 6

-2 8 -1 -9

2 1 -2

1 -1 -1

2 -1 -2

-1 -1 1

*

https://efficientml.ai

Song Han: Slide Title https://efficientml.ai

SmoothQuant
Smoothing activation to reduce quantization error

2626

sj = max(� Xj �)α / max(� Wj �)1−α, j = 1,2,…, Ci

Y = (Xdiag(s)−1) ⋅ (diag(s)W) = X̂Ŵ

1 4 1 3s

X

W

1 -16 2 6

-2 8 -1 -9

2 1 -2

1 -1 -1

2 -1 -2

-1 -1 1

2 1 -2

4 -4 -4

2 -1 -2

-3 -3 3

1 -4 2 2

-2 2 -1 -3

X̂ = X diag(s)−1
Ŵ = diag(s)W

* *

https://efficientml.ai

Song Han: Slide Title https://efficientml.ai

SmoothQuant
Efficient System Implementation

2727

FC1

LayerNorm

Q K V

BMM

Softmax

BMM

Projection

LayerNorm

ReLU

FC2

FP16

INT8

+ +

FC1

LayerNorm

Q K V

BMM

Softmax

BMM

Projection

LayerNorm

ReLU

FC2

FP16

INT8

+ +

- All compute-intensive operators (Linears, BMMs) are quantized

https://efficientml.ai

Song Han: Slide Title https://efficientml.ai

SmoothQuant (W8A8)
Accurate and efficient quantization of various LLMs

2828

• SmoothQuant well maintains the accuracy without fine-tuning.

• SmoothQuant can both accelerate inference and halve the memory footprint.

0

225

450

675

900

128 256 512 1024

720

366

194
122

848

432

228

139

FP16 (8 GPUs) SmoothQuant (4 GPUs)

0

100

200

300

400

128 256 512 1024

200189184182

389378372369

OPT-175B

M
em

or
y

(G
B

)

La
te

nc
y

(m
s)

OPT-175B BLOOM-176B GLM-130B

FP16 71.6% 68.2% 73.8%

SmoothQuant 71.2% 68.3% 73.7%

LAMBADA Accuracy

https://efficientml.ai

Song Han: Slide Title https://efficientml.ai

SmoothQuant (W8A8)
Scaling up: W8A8 quantization of MT-NLG 530B

29

- SmoothQuant can accurately quantize MT-NLG 530B model and reduce the serving GPU numbers by half
at a similar latency, which allows serving the 530B model within a single node.

29

MT-NLG 530B Accuracy

MT-NLG 530B Efficiency

https://efficientml.ai

Song Han: Slide Title https://efficientml.ai

SmoothQuant (W8A8)
Advancing new efficient open model LLaMA

- LLaMA (and its successors like Alpaca) are popular open-
source LLMs, which introduced SwishGLU, making activation
quantization even harder 

- SmoothQuant can losslessly quantize LLaMA families, further
lowering the hardware barrier

30

Wikitext PPL↓ LLaMA 7B LLaMA 13B LLaMA 30B LLaMA 65B

FP16 11.51 10.05 7.53 6.17

SmoothQuant 11.56 10.08 7.56 6.20

SmoothQuant

int8

https://efficientml.ai

Song Han: Slide Title https://efficientml.ai

Industry & Community Impact
SmoothQuant is widely adopted by industry

• NVIDIA FasterTransformer

• NVIDIA TRT-LLM

• MLPerf 8-bit: closed the accuracy gap.

• Intel Neural Compressor / Q8-Chat on Xeon

• Ongoing efforts by Meta/Microsoft/Amazon/HuggingFace …

31

https://efficientml.ai

Song Han: Slide Title https://efficientml.ai

W4A16 for Single Query Serving
W8A8 cannot address low computational intensity of decoding

- W8A8 quantization is good for batch serving (e.g., batch size 128)

- But single-query LLM inference (e.g., local) is still highly memory-bounded

- We need low-bit weight-only quantization (e.g., W4A16) for this setting

32

• A100 GPU

• LLaMA-65B decoding

TFLOPS

312

Compute intensity
0

bs=128

bs=1

https://efficientml.ai

Song Han: Slide Title https://efficientml.ai

AWQ: Activation-aware Weight Quantization
Observation: Weights are not equally important; 0.1% salient weights

33

- We find that weights are not equally important, keeping only 0.1% of salient weight channels in FP16
can greatly improve perplexity

- But how do we select salient channels? Should we select based on weight magnitude?

+1.2 −0.2 −2.4 −3.4

−2.5 −3.5 +1.9 +1.4

−0.9 +1.6 −2.5 −1.9

−3.5 +1.5 +0.5 −0.1

+1.8 −1.6 −3.2 −3.4

+2.4 −3.5 −2.8 −3.9

+0.1 −3.8 +2.4 +3.4

+0.9 +3.3 −1.9 −2.3

RTN

WFP16 Q(W)MixPrec

+1 +0 −2 −3

−1 +2 −3 −2

−4 +2 +1 +0

+2 −2 −3 −3

+2 −4 −3 −4

+0 −4 +2 +3

+1 +3 −2 −2

−2.5 −3.5 +1.9 +1.4 FP16
channel

0

10

20

30

40

50

FP16 RTN act weight random

OPT-6.7B Wiki-2 PPL↓

0.1% FP16

degrade 0.1% FP16
helps

https://efficientml.ai

Song Han: Slide Title https://efficientml.ai

AWQ: Activation-aware Weight Quantization
Salient weights are determined by activation distribution, not weight

34

- We find that weights are not equally important, keeping only 0.1% of salient weight channels in FP16
can greatly improve perplexity

- But how do we select salient channels? Should we select based on weight magnitude?

- No! We should look for activation distribution, but not weight!

Q(W)MixPrec

+1 +0 −2 −3

−1 +2 −3 −2

−4 +2 +1 +0

+2 −2 −3 −3

+2 −4 −3 −4

+0 −4 +2 +3

+1 +3 −2 −2

−2.5 −3.5 +1.9 +1.4 FP16
channel

0

10

20

30

40

50

FP16 RTN activation weight random

OPT-6.7B Wiki-2 PPL↓

0.1% FP16 based on

✅

❌ ❌

X

determine the salient
weights by activation

big
improve

small improve

https://efficientml.ai

Song Han: Slide Title https://efficientml.ai

AWQ: Activation-aware Weight Quantization
Protecting salient weights by scaling (no mixed prec.)

35

W

Q()

 1×
 2×
 1×
 1×
 1×
 1×
 1×
 1× fuse to previous op

+1.2 −0.2 −2.4 −3.4

−2.5 −3.5 +1.9 +1.4

−0.9 +1.6 −2.5 −1.9

−3.5 +1.5 +0.5 −0.1

+1.8 −1.6 −3.2 −3.4

+2.4 −3.5 −2.8 −3.9

+0.1 −3.8 +2.4 +3.4

+0.9 +3.3 −1.9 −2.3

- Multiplying the salient channels with reduces its quantization error

- Skip mathematical derivation for now

s > 1

Q(w ⋅ s)(x/s) = Δ′ ⋅ Round(ws/Δ′) ⋅ x ⋅ 1
s

suppress errorconstant E(error)

Q(w) ⋅ x = Δ ⋅ Round(w
Δ) ⋅ x, Δ = max(� w �)

2N−1

Δ′ ≈ Δ, RoundErr ∼ 0.25, s > 1

Err(Q(w ⋅ s)(x/s)
Err(Q(w) ⋅ x) = Δ′

Δ ⋅ 1
s

< 1

https://efficientml.ai

Song Han: Slide Title https://efficientml.ai

Industry & Community Impact

• SmoothQuant

• NVIDIA FasterTransformer

• NVIDIA TRT-LLM

• MLPerf 8-bit: closed the accuracy gap.

• Intel Neural Compressor

• Ongoing efforts at Meta/Microsoft/Amazon/HuggingFace …

• AWQ
• AWQ is integrated by FastChat, vLLM, HuggingFace TGI, and LMDeploy.

• Check out AutoAWQ, a third-party implementation to make AWQ easier to expand to new

models, improve inference speed, and integrate into Huggingface

36

https://efficientml.ai
https://github.com/lm-sys/FastChat/blob/main/docs/awq.md
https://github.com/vllm-project/vllm/blob/main/vllm/model_executor/quantization_utils/awq.py
https://github.com/huggingface/text-generation-inference/pull/1054
https://github.com/InternLM/lmdeploy
https://github.com/casper-hansen/AutoAWQ

— LLM on the Edge

- Deploying LLM on the edge is useful: running copilot
services (code completion, office, game chat) locally
on laptops, cars, robots, and more.

- resource-constrained, low-power and sometimes do
not have access to the Internet.

- Data privacy is important. Users do not want to share
personal data with large companies.

Song Han: Slide Title https://efficientml.ai

TinyChat: A Lightweight Serving Infra
Pythonic, lightweight, efficient

• We need a framework to serve the quantized model to achieve low latency (AWQ only for
Linears)

• HuggingFace: easy to use, but slow

• FasterTransformer: high efficiency, but harder to use

38

Efficiency

Ease of use

FasterTransformer

HuggingFace

https://efficientml.ai

Song Han: Slide Title https://efficientml.ai

TinyChat: A Lightweight Serving Infra
Pythonic, lightweight, efficient

• We need a framework to serve the quantized model to achieve low latency

• HuggingFace: easy to use, but slow

• FasterTransformer: high efficiency, but harder to use

• TinyChat goals: efficient, lightweight, Python-native (composable with other stacks like
vLLM)

39

Efficiency

Ease of use

FasterTransformer

HuggingFace

TinyChat

https://efficientml.ai

Song Han: Slide Title https://efficientml.ai

On Device LLM

40

- We enable edge deployment of LLMs through quantization: SmoothQuant and AWQ
- TinyChatEngine implements the compressed inference, built from C/C++ from scratch, easy to install and migrate

to edge platforms

https://efficientml.ai

Song Han: Slide Title https://efficientml.ai

Improving Multi-Modal LLMs
Ji’s internship project at NVIDIA Research (WIP)

• AWQ makes multi-modal LLM efficient

• But the current open-source multi-modal LLMs have poor visual-language alignment

42

Question: Is the man wearing eyeglasses?

LLava-7B: Yes, the man is wearing eyeglasses.

MiniGPT-4-7B: Yes, the man is wearing eyeglasses.

VPGTrans-7B: Yes, the man is wearing eyeglasses.

LLama-Adapter-V2-7B: Yes, the man is wearing
eyeglasses in the image.

https://efficientml.ai

Song Han: Slide Title https://efficientml.ai

Improving Multi-Modal LLMs
Improving PaLM-E alike Vision Language Models (VLM)

• We study PaLM-E alike architecture due to its flexibility for multi-modal input/output

• Visual input as a foreign language

• Goal: good performance on both visual-language and text-only

43

What is in the image?

embedprojector

LLM

ViT

A flamingo is in the image.

https://efficientml.ai

Song Han: Slide Title https://efficientml.ai

Improving Multi-Modal LLMs
Improving PaLM-E alike Vision Language Models (VLM)

• We study PaLM-E alike architecture due to its flexibility for multi-modal input/output

• Visual input as a foreign language

• Goal: Multi-modal LLM with good visual-language performance and text-only performance

44

What is in the image?

embedprojector

LLM

ViT

A flamingo is in the image. text-only
pre-training

visual-text
continue pre-training

visual-text
instruction tuning

https://efficientml.ai

Song Han: Slide Title https://efficientml.ai

Improving Multi-Modal LLMs
Qualitative results

45

• ICL example (counting)

pandas: 3 dogs: 2 Pred: cats: 3

context prediction

https://efficientml.ai

Song Han: Slide Title https://efficientml.ai

Improving Multi-Modal LLMs
Qualitative results

46

• ICL example (world knowledge)

The company is
famous for its
search engine.

The company is
famous for the
operating system.

Pred: The company is
famous for its graphics
processing units (GPUs)

The company is
famous for
iPhone and Mac.

https://efficientml.ai

Song Han: Slide Title https://efficientml.ai

Improving Multi-Modal LLMs
Qualitative results

47

• We can use the model to explain self-driving scenarios (zero-shot)

Q: Can the vehicle proceed through the traffic now?

A: Based on the image, the vehicle cannot proceed
through the traffic yet. There are multiple people and
bicycles in the crosswalk, and the traffic light is red. The
vehicle must wait for the traffic light to turn green before
proceeding.

https://efficientml.ai

Song Han: Slide Title https://efficientml.ai

Improving Multi-Modal LLMs
Qualitative results

• Explaining an NVIDIA meme

48

Q: Can you explain the meme?

A: The meme depicts a man's reaction to the price of a
computer graphics card. In the first image, the man is smiling
and appears excited about the product. In the second image, he
is shocked and disappointed by the high price of the graphics
card, which is $1,200. The meme is a playful representation of
the contrast between the man's initial enthusiasm and his
subsequent disappointment upon learning the cost of the
product.

https://efficientml.ai

Song Han: Slide Title https://efficientml.ai

SpAtten: Transformer with Sparse Attention
Token Pruning: not every token is equally important. Progressively prune them.

49

Remove redundant token and head according to cumulative importance

Attention Prob

A
cc

um
ul

at
e

ve
rti

ca
lly

0.4 1.0 0.3 1.2 1.7 1.0 0.4 1.8 0.6 1.9 1.4 0.3 0.9 0.4

Attention Prob Attention Prob

A
cc

um
ul

at
e

ve
rti

ca
lly

Tokens with small cumulative importance scores are pruned away

0.4 1.0 0.3 1.2 1.7 1.0 0.4 1.8 0.6 1.9 1.4 0.3 0.9 0.4

https://efficientml.ai

Song Han: Slide Title https://efficientml.ai

SparseViT: Token Pruning for ViTs
Sparse high-resolution features are better than dense low-resolution ones

50

Lower Resolution (0.5x), Dense (100%)

Higher Resolution (1.0x), Sparse (25%)
De

te
ct

io
n

m
AP

28

29

30

31

32

16 20.4 24.8 29.2 33.6 38

SparseViT
Baseline

(R256, W1x)

R224

R192

W0.6x

W0.4x

1.5X Faster

1.3%
Higher

3D Monocular Object Detection (nuScenes)

Latency (ms)

- 1.5X faster than the baseline without loss of accuracy.

- 1.3% higher mAP than the baseline with reduced resolution.

https://efficientml.ai

Song Han: Slide Title https://efficientml.ai

SparseRefine: Pixel Pruning for CNN
sparse high-resolution + dense low-resolution

51

Enabled by TorchSparse
Tang et al. [MICRO’23]
Tang et al. [MLSys’22]

https://efficientml.ai

Song Han: Slide Title https://efficientml.ai

Lite Transformer
Specialization: Convolution (local feature) + Attention (global feature)

• Long-Short Range Attention (LSRA):

• Convolution: Efficiently extract the local (short-range) features.

• Attention: Tailored for global (long-range) feature extraction.

52

Original Attention
(Too much emphasize on 
local feature extraction)

Attention in LSRA
(Dedicated for global 

feature extraction)

https://efficientml.ai

Song Han: Slide Title https://efficientml.ai

HAT: Hardware Aware Transformer
Specialization: design different transformer architecture tailored for different hardware

53

WMT14 En-De latency on Arm CPU-1

Change #Layer Change #Layer Change
Dimension

Change
Dimension

Our HAT Our HAT sacrebleu Total To last one To last two To last three

1.53 24.37 1.80 24.58 25.60 1 1 0 0

1.90 25.85 3.35148 27.63 1.37 26.4 26.64 2 2 0 0

2.26 26.54 10.02 28.4 1.68 26.9 27.13 2 1 1 0

2.62 27.04 2.24 27.54 27.23 3 2 1 0

2.99 27.53 2.81 27.80 27.61 4 3 1 0

3.35148 27.63 3.04559270516717 3.29 27.94 27.81 5 2 3 0

4.55 28.2 17 11 6 0

5.22 28.3

5.565561 28.4

0.99314 24.94

B
LE

U
 S

co
re

24

25

26

27

28

29

1 4 7 10

1.9× Faster
2.8× Smaller

Vanilla Transformer-Base
Attention FLOPs Ratio: 1.07%

Vanilla Transformer-Big

SpAtten Latency (ms)

Co-designed Transformers for SpAtten
Layer Number Scaling of Vanilla Transformer
Dimension Scaling of Vanilla Transformer

2.0

Attention FLOPs
Ratio: 1.59%

1

2

3
4 5

6 7

SuperTransformer

Evolutionary Search with
Hardware Constraints

Specialized Deployment is Efficient

Hardware
Latency

Feedback

SubTransformers

12/3/2019
noun_sensor_1895988.svg

file:///U
sers/hanruiw

ang/D
ow

nloads/noun_sensor_1895988.svg
1/1

Created
by
Carolina
Cani
from

the
Noun
Project

IoT

12/3/2019 noun_gpu_1132940.svg

file:///Users/hanruiwang/Downloads/noun_gpu_1132940.svg 1/1

Created
by
Misha
Petrishchev
from
the
Noun
Project

GPU

12/3/2019 Electronic Device

file:///Users/hanruiwang/Downloads/noun_CPU_2880768.svg 1/1

Created
by
Muhammad
Khoirul
Am
from
the
Noun
Project

CPU

Different Hardware

12/6/2019 noun_dashboard_50324.svg

file:///Users/hanruiwang/Downloads/noun_dashboard_50324.svg 1/1

Created
by
Dawid
Sobolewski
from
the
Noun
Project

TinyML Deeper Wider

ҁWeight-Sharing҂

WMT14 En-De latency on Intel CPU

Change #Layer Change #Layer Change
Dimension

Change
Dimension

Our HAT Our HAT sacrebleu Total To last one To last two To last three

125.6744315 24.37 318.8635727 24.58 137.8659119 25.83 25.63 1 0 1 0

181.4779053 25.85 415.5805737 27.63 204.1926424 27.62 27.13 2 1 1 0

267.8353677 26.54 630.4540406 28.4 278.7041912 27.9 27.28 3 1 2 0

303.4228822 27.04 340.1943684 28.1 27.49 4 2 2 0

357.4422042 27.53 369.6464062 28.2 27.59 5 2 3 0

415.5805737 27.63 2.03523774811584 450.9188682 28.53 27.93 6 3 3 0

21 9 12 0

WMT14 En-De latency on Arm CPU-1

Change #Layer Change #Layer Change
Dimension

Change
Dimension

Our HAT Our HAT sacrebleu Total To last one To last two To last three

3.320969731 24.37 3.119880478 24.58 3.510976136 25.82 25.60 1 1 0 0

4.10328116 25.85 7.347423464 27.63 3.99612087 26.91 26.64 2 2 0 0

4.906528513 26.54 20.54689761 28.4 4.507411629 27.62 27.13 2 1 1 0

5.675740421 27.04 5.006854216 27.83 27.23 3 2 1 0

6.494072417 27.53 6.0 28.15 27.61 4 3 1 0

7.347423464 27.63 2.96925593028383 6.919880971 28.44 27.81 5 2 3 0

17 11 6 0

WMT14 En-De latency on titanxp-1

Change #Layer Change #Layer Change
Dimension

Change
Dimension

Our HAT Our HAT sacrebleu Total To last one To last two To last three

56.4535487 24.37 233.4403444 24.58 57.11806165 25.83 25.63 1 0 1 0

93.52474536 25.85 245.1151872 27.63 91.17974952 27.62 27.13 2 1 1 0

131.0418878 26.54 254.7298993 28.4 126.0203572 27.9 27.28 3 1 2 0

170.571674 27.04 1.47E+02 28.1 27.49 3 1 2 0

210.3917578 27.53 208.1187446 28.5 27.84 5 2 3 0

245.1151872 27.63 2.68826344106412

135.37 14 5 9 0

24

25

26

27

28

29

100 234 368 501 635

B
LE

U
 S

co
re

24

25

26

27

28

29

3 7 12 16 21

24

25

26

27

28

29

50 101 153 204 255

WMT14 En-Fr latency on intel CPU-1

Change #Layer Change #Layer Change
Dimension

Change
Dimension

Our HAT Our HAT sacrebleu Total To last one To last two To last three

144.0132509 37.23 326.9822071 37.13 154.6823412 39.09 36.31 1 1 0 0

201.8358638 38.89 431.1191042 40.6 208.7727835 40 37.15 2 1 0 1

259.3422612 39.94 737.3172412 41.2 329.3679456 41.1 38.24 4 2 1 1

329.1240702 40.21 394.5148965 41.41 38.53 5 2 1 2

374.3495574 40.46 441.962711 41.66 38.81 6 3 2 1

431.1191042 40.6

2.23858226354374 18 9 4 5

37

38

39

40

41

42

120 275 430 585 740

WMT14 En-Fr latency on Arm CPU

Change #Layer Change #Layer Change
Dimension

Change
Dimension

Our HAT Our HAT sacrebleu Total To last one To last two To last three

4.079504708 37.23 3.829777499 37.13 4.269129376 38.75 35.95 1 1 0 0

4.854586174 38.89 8.044359436 40.6 5.33629785 40.14 37.29 2 1 0 1

5.650409361 39.94 23.15697475 41.2 5.818866263 40.64 37.76 3 2 1 0

6.465141773 40.21 6.859018068 41.11 38.26 4 3 1 0

7.269941688 40.46 7.827191518 41.4 38.54 5 3 2 0

8.044359436 40.6 2.95852921149897 9.065828112 41.8 38.86 6 3 3 0

21 13 7 1

B
LE

U
 S

co
re

37

38

39

40

41

42

3 8 13 18 23

Intel CPU latency (ms)

HAT (Ours)

3.0× Faster
3.7× Smaller

Transformer-Base

Raspberry Pi ARM CPU latency (s) Nvidia GPU latency (ms)

1.6× Faster

Layer Number Scaling of Transformer (Vaswani et al.) Dimension Scaling of Transformer (Vaswani et al.)

Transformer-Big

1.5

1.5

1.5

Dimension scaling
can hardly reduce latency

on Nvidia GPU

Transformer-Base

2.7× Faster

WMT ’14 En-Fr

3.0× Faster
3.6× Smaller

Transformer-Big

Raspberry Pi ARM CPU latency (s) Intel CPU latency (ms)

WMT ’14 En-Fr

1.6

2.2× Faster

1.9

WMT ’14 En-De WMT ’14 En-De WMT ’14 En-De

2.0× Faster

Transformer-Base

Transformer-Big Transformer-Big

Transformer-Base

Transformer-Big

Transformer-Base

WMT14 En-De latency on titanxp-1-1

Change #Layer Change #Layer Change
Dimension

Change
Dimension

Our HAT Our HAT sacrebleu Total To last one To last two To last three

57.03669935 37.23 233.1844045 37.13 69.31571099 39.1 36.31 1 1 0 0

90.18124064 38.89 234.7934725 40.6 94.92767955 40 37.15 2 1 0 1

128.0396621 39.94 238.828734 41.2 132.8543258 40.7 37.81 3 2 1 0

166.6058949 40.21 168.3487089 41.1 38.25 4 2 1 1

202.3486488 40.46 208.3378961 41.7 38.78 5 2 2 1

234.7934725 40.6 1.76730016946125

188.3 15 8 4 3

37

38

39

40

41

42

50 98 145 193 240
Nvidia GPU latency (ms)

WMT ’14 En-Fr

1.8× Faster

1.9

Transformer-Big

Transformer-Base

Dimension scaling
can hardly reduce latency

on Nvidia GPU

WMT14 En-De latency on Intel CPU

Change #Layer Change #Layer Change
Dimension

Change
Dimension

Our HAT Our HAT sacrebleu Total To last one To last two To last three

125.6744315 24.37 318.8635727 24.58 137.8659119 25.83 25.63 1 0 1 0

181.4779053 25.85 415.5805737 27.63 204.1926424 27.62 27.13 2 1 1 0

267.8353677 26.54 630.4540406 28.4 278.7041912 27.9 27.28 3 1 2 0

303.4228822 27.04 340.1943684 28.1 27.49 4 2 2 0

357.4422042 27.53 369.6464062 28.2 27.59 5 2 3 0

415.5805737 27.63 2.03523774811584 450.9188682 28.53 27.93 6 3 3 0

21 9 12 0

WMT14 En-De latency on Arm CPU-1

Change #Layer Change #Layer Change
Dimension

Change
Dimension

Our HAT Our HAT sacrebleu Total To last one To last two To last three

3.320969731 24.37 3.119880478 24.58 3.510976136 25.82 25.60 1 1 0 0

4.10328116 25.85 7.347423464 27.63 3.99612087 26.91 26.64 2 2 0 0

4.906528513 26.54 20.54689761 28.4 4.507411629 27.62 27.13 2 1 1 0

5.675740421 27.04 5.006854216 27.83 27.23 3 2 1 0

6.494072417 27.53 6.0 28.15 27.61 4 3 1 0

7.347423464 27.63 2.96925593028383 6.919880971 28.44 27.81 5 2 3 0

17 11 6 0

WMT14 En-De latency on titanxp-1

Change #Layer Change #Layer Change
Dimension

Change
Dimension

Our HAT Our HAT sacrebleu Total To last one To last two To last three

56.4535487 24.37 233.4403444 24.58 57.11806165 25.83 25.63 1 0 1 0

93.52474536 25.85 245.1151872 27.63 91.17974952 27.62 27.13 2 1 1 0

131.0418878 26.54 254.7298993 28.4 126.0203572 27.9 27.28 3 1 2 0

170.571674 27.04 1.47E+02 28.1 27.49 3 1 2 0

210.3917578 27.53 208.1187446 28.5 27.84 5 2 3 0

245.1151872 27.63 2.68826344106412

135.37 14 5 9 0

24

25

26

27

28

29

100 234 368 501 635

B
LE

U
 S

co
re

24

25

26

27

28

29

3 7 12 16 21

24

25

26

27

28

29

50 101 153 204 255

WMT14 En-Fr latency on intel CPU-1

Change #Layer Change #Layer Change
Dimension

Change
Dimension

Our HAT Our HAT sacrebleu Total To last one To last two To last three

144.0132509 37.23 326.9822071 37.13 154.6823412 39.09 36.31 1 1 0 0

201.8358638 38.89 431.1191042 40.6 208.7727835 40 37.15 2 1 0 1

259.3422612 39.94 737.3172412 41.2 329.3679456 41.1 38.24 4 2 1 1

329.1240702 40.21 394.5148965 41.41 38.53 5 2 1 2

374.3495574 40.46 441.962711 41.66 38.81 6 3 2 1

431.1191042 40.6

2.23858226354374 18 9 4 5

37

38

39

40

41

42

120 275 430 585 740

WMT14 En-Fr latency on Arm CPU

Change #Layer Change #Layer Change
Dimension

Change
Dimension

Our HAT Our HAT sacrebleu Total To last one To last two To last three

4.079504708 37.23 3.829777499 37.13 4.269129376 38.75 35.95 1 1 0 0

4.854586174 38.89 8.044359436 40.6 5.33629785 40.14 37.29 2 1 0 1

5.650409361 39.94 23.15697475 41.2 5.818866263 40.64 37.76 3 2 1 0

6.465141773 40.21 6.859018068 41.11 38.26 4 3 1 0

7.269941688 40.46 7.827191518 41.4 38.54 5 3 2 0

8.044359436 40.6 2.95852921149897 9.065828112 41.8 38.86 6 3 3 0

21 13 7 1

B
LE

U
 S

co
re

37

38

39

40

41

42

3 8 13 18 23

Intel CPU latency (ms)

HAT (Ours)

3.0× Faster
3.7× Smaller

Transformer-Base

Raspberry Pi ARM CPU latency (s) Nvidia GPU latency (ms)

1.6× Faster

Layer Number Scaling of Transformer (Vaswani et al.) Dimension Scaling of Transformer (Vaswani et al.)

Transformer-Big

1.5

1.5

1.5

Dimension scaling
can hardly reduce latency

on Nvidia GPU

Transformer-Base

2.7× Faster

WMT ’14 En-Fr

3.0× Faster
3.6× Smaller

Transformer-Big

Raspberry Pi ARM CPU latency (s) Intel CPU latency (ms)

WMT ’14 En-Fr

1.6

2.2× Faster

1.9

WMT ’14 En-De WMT ’14 En-De WMT ’14 En-De

2.0× Faster

Transformer-Base

Transformer-Big Transformer-Big

Transformer-Base

Transformer-Big

Transformer-Base

WMT14 En-De latency on titanxp-1-1

Change #Layer Change #Layer Change
Dimension

Change
Dimension

Our HAT Our HAT sacrebleu Total To last one To last two To last three

57.03669935 37.23 233.1844045 37.13 69.31571099 39.1 36.31 1 1 0 0

90.18124064 38.89 234.7934725 40.6 94.92767955 40 37.15 2 1 0 1

128.0396621 39.94 238.828734 41.2 132.8543258 40.7 37.81 3 2 1 0

166.6058949 40.21 168.3487089 41.1 38.25 4 2 1 1

202.3486488 40.46 208.3378961 41.7 38.78 5 2 2 1

234.7934725 40.6 1.76730016946125

188.3 15 8 4 3

37

38

39

40

41

42

50 98 145 193 240
Nvidia GPU latency (ms)

WMT ’14 En-Fr

1.8× Faster

1.9

Transformer-Big

Transformer-Base

Dimension scaling
can hardly reduce latency

on Nvidia GPU

Search for most efficient Transformer model with hardware feedback

https://efficientml.ai

Song Han: Slide Title https://efficientml.ai

Spatially Sparse Inference for Diffusion Models
Qualitative Results of SIGE on Stable Diffusion

54

A photograph of a horse on a grassland. A fantasy beach landscape, trending on artstation.

Original 11.6% Masked

Stable Diffusion:

1855GMACs 369ms

Ours:

514G (3.6) 95.0ms (3.9)× ×

Original 2.9% Edited

Stable Diffusion+SDEdit:

1855GMACs 369ms

Ours:

353G (5.3) 76.4ms (4.8)× ×

Latency Measured on NVIDIA RTX 3090

Image Inpainting Image Editing

https://efficientml.ai

Song Han: Slide Title https://efficientml.ai

Fast Composer

55

https://efficientml.ai

Song Han: Slide Title https://efficientml.ai

MCUNet for TinyML
Advancing object detection by allowing a larger resolution

• Resolution is more important for detection than classification

• Our method significantly improves objection detection by double digits

56

Face/mask detection Person detection

OpenMV Cam: 512KB SRAM + 2MB Flash

https://efficientml.ai

Song Han: Slide Title https://efficientml.ai

Can We Learn on Edge?
AI systems need to continually adapt to new data collected from the sensors

●On-device learning: better privacy, lower cost, customization, life-long learning

●Training is more expensive than inference, hard to fit edge hardware (limited memory)

57

User Intelligent Edge Devices

New and Sensitive
Data

…

Cloud Server

On-device Learning

Cloud-based Learning

data cannot be sent to the  
cloud for privacy reason

https://efficientml.ai

Song Han: Slide Title https://efficientml.ai

On-Device Training Under 256KB Memory

58

1. Quantization-aware
scaling

2. Sparse layer/tensor
update

3. Tiny Training
Engine

+ Operator reordering

652 MB

303 MB

41.5 MBPyTorch (cloud)
TensorFlow (cloud)

MNN (edge)
Tiny Training Engine

+ Quantization-aware scaling
+ Sparse layer/tensor update

256KB constraint

141 KB

0.1 MB 1 MB 10 MB 100 MB

5.7 MB

2.9MB

355 KB

7.3x
2.0x

8.8x
2.4x

2300x

https://efficientml.ai

Song Han: Slide Title https://efficientml.ai

PockEngine: Sparse and Efficient Fine-tuning in a Pocket
Finetune Llama-7B on edge device (to appear at MICRO’23)

59

https://efficientml.ai

Song Han: Slide Title https://efficientml.ai

PockEngine: Sparse and Efficient Fine-tuning in a Pocket
Finetune Llama-7B on edge device (to appear at MICRO’23)

60

https://efficientml.ai

Song Han: Slide Title https://efficientml.ai 61

Open Source

Sign up here to get updates!

https://forms.gle/UW1uUmnfk1k6UJPPA

https://efficientml.ai
https://forms.gle/UW1uUmnfk1k6UJPPA

Song Han: Slide Title https://efficientml.ai

EfficientML.ai Course TinyML and Efficient AI Computing

62

Efficient Inference
pruning, quantization, neural

architecture search, distillation

Efficient Training
gradient compression, on-device

training, federated learning

Application-Specific
Optimizations

LLM, AIGC, video, point-cloud

System Algorithm

CSEE

AI+D97 registered + 40 listeners

89K views on YouTube

700 students in the open study group on Discord

https://efficientml.ai

Song Han: Slide Title https://efficientml.ai

EfficientML.ai Course

63
https://efficientml.ai

https://efficientml.ai
https://efficientml.ai

Song Han: Slide Title https://efficientml.ai

EfficientML.ai Hands-on Labs

64

Lab 1:
Pruning

Lab 2:
Quantization

Lab 3:
Neural Architecture

Search

Lab 5:
On-Device LLM

Deployment

Lab 4:
LLM Compression

Lab 0: Tutorial
on PyTorch

https://efficientml.ai

https://efficientml.ai
https://efficientml.ai

Song Han: Slide Title https://efficientml.ai 65

MIT AI Hardware
Program

MIT Microsystems Technology Laboratories (SoE)

MIT Quest for Intelligence – Corporate (SCC)

Co-Leads: Jesús del Alamo and Aude Oliva

Internal Advisory Board Chair: Anantha Chandrakasan

1

https://efficientml.ai

Song Han: Slide Title https://efficientml.ai 66

Hardware for AI and Neural-net

Proposal for DARPA-NVIDIA-SDH Initiative

PI: Song Han

Project 1: ”Efficient Hardware Primitives for Sparse Linear Algebra”

Pruning techniques [Han’15] show that DNN models can be pruned to very sparse,
saving the FLOPs by 10x and model size by 8x (FC layer, index included). However, it’s
challenging for general purpose hardware to take advantage of sparsity. EIE [Han’16] is
the first hardware accelerator for sparse DNN, it’s efficient but it lacks flexibility. TACO
[Kjolstad’17] is a flexible compiler for sparse linear algebra on CPU, but it lacks
accelerator support. Therefore, I plan to work on an specialized accelerator for sparse
linear algebra. There are two basic operations to be accelerated: union (OR) and join
(AND). Software implementation need O(n) cycles. I plan to work on O(log(n)) time
complexity, O(n) area complexity arrays; or O(1) time complexity, O(n^2) space
complexity arrays. After that, I’d like to implement this architecture in FPGA or ASIC,
then integrate the HW primitive into TACO. Then, I want to co-design the machine
learning models that are not only pruned to be sparse, but also with the optimal
granularity of sparsity that fits the accelerator. Lastly, I’ll demonstrate a few machine
learning applications accelerated with such sparse primitives: machine translation,
speech recognition, image classification, and Progressive GAN, which makes real-time
AI and embedded-AI possible for IoT devices. It can also make cloudAI more energy
efficient by saving the electric bill and total cost of ownership (TCO).

Potential product impact for NVIDIA: future DLA architectures in Xavier, Orin, etc.

Project 2: “Optimal Number Representation for Efficient Training/Inference”

“Number representation” is a fundamental problem for efficient machine learning. For
inference, Linear Quantization [TensorRT] or Kmeans Quantization [Han’16] are two
extremes of quantization. The former has easy hw implementation but poor
expressiveness. The latter has inefficient hw implementation (need register lookup
every time) but flexible expressiveness. For training, Conventional fp16 or fp32 are also
inefficient, since training DNNs needs more dynamic range and exciting methods need
careful scaling factor tuning to avoid underflow or overflow [NVIDIA’17]. Given the large
design space, we are interested in learning to learn the optimal number representation
for deep learning. The design space include:  
[linear quantization, log quantization, kmeans quantization] x 
[weight, activation, gradient] x  
[training, inference] x [channel number] x [layer number] x [bit width] x [decimal point]  
This is a large design space that’s hard to be explored by human. It should be explored
by AI. I plan to use machine learning techniques to find the best number representation
for machine learning. It’s a co-design of number representation together with model
architecture, trading off hardware efficiency and model accuracy. I’d like to push the
pareto frontier of such trade-off.

Potential product impact for NVIDIA: future TensorRT and cuDNN libraries.

HAN Lab Students: Yujun Lin (Arch PhD), Hanrui Wang (Arch PhD), Zhijian Liu (ML PhD)

Hardware for AI and Neural-net

Proposal for DARPA-NVIDIA-SDH Initiative

PI: Song Han

Project 1: ”Efficient Hardware Primitives for Sparse Linear Algebra”

Pruning techniques [Han’15] show that DNN models can be pruned to very sparse,
saving the FLOPs by 10x and model size by 8x (FC layer, index included). However, it’s
challenging for general purpose hardware to take advantage of sparsity. EIE [Han’16] is
the first hardware accelerator for sparse DNN, it’s efficient but it lacks flexibility. TACO
[Kjolstad’17] is a flexible compiler for sparse linear algebra on CPU, but it lacks
accelerator support. Therefore, I plan to work on an specialized accelerator for sparse
linear algebra. There are two basic operations to be accelerated: union (OR) and join
(AND). Software implementation need O(n) cycles. I plan to work on O(log(n)) time
complexity, O(n) area complexity arrays; or O(1) time complexity, O(n^2) space
complexity arrays. After that, I’d like to implement this architecture in FPGA or ASIC,
then integrate the HW primitive into TACO. Then, I want to co-design the machine
learning models that are not only pruned to be sparse, but also with the optimal
granularity of sparsity that fits the accelerator. Lastly, I’ll demonstrate a few machine
learning applications accelerated with such sparse primitives: machine translation,
speech recognition, image classification, and Progressive GAN, which makes real-time
AI and embedded-AI possible for IoT devices. It can also make cloudAI more energy
efficient by saving the electric bill and total cost of ownership (TCO).

Potential product impact for NVIDIA: future DLA architectures in Xavier, Orin, etc.

Project 2: “Optimal Number Representation for Efficient Training/Inference”

“Number representation” is a fundamental problem for efficient machine learning. For
inference, Linear Quantization [TensorRT] or Kmeans Quantization [Han’16] are two
extremes of quantization. The former has easy hw implementation but poor
expressiveness. The latter has inefficient hw implementation (need register lookup
every time) but flexible expressiveness. For training, Conventional fp16 or fp32 are also
inefficient, since training DNNs needs more dynamic range and exciting methods need
careful scaling factor tuning to avoid underflow or overflow [NVIDIA’17]. Given the large
design space, we are interested in learning to learn the optimal number representation
for deep learning. The design space include:  
[linear quantization, log quantization, kmeans quantization] x 
[weight, activation, gradient] x  
[training, inference] x [channel number] x [layer number] x [bit width] x [decimal point]  
This is a large design space that’s hard to be explored by human. It should be explored
by AI. I plan to use machine learning techniques to find the best number representation
for machine learning. It’s a co-design of number representation together with model
architecture, trading off hardware efficiency and model accuracy. I’d like to push the
pareto frontier of such trade-off.

Potential product impact for NVIDIA: future TensorRT and cuDNN libraries.

HAN Lab Students: Yujun Lin (Arch PhD), Hanrui Wang (Arch PhD), Zhijian Liu (ML PhD)

Hardware, AI and Neural-nets

TinyML and Efficient AI Computing

Media:

songhan.mit.edu
tinyml.mit.edu

youtube.com/c/MITHANLab
github.com/mit-han-lab

Sponsors:

https://efficientml.ai
https://songhan.mit.edu
http://hanlab.mit.edu
http://youtube.com/c/MITHANLab
https://github.com/mit-han-lab

