
Guangxuan Xiao

Efficient Large Language Models and
Generative AI

xgx@mit.edu 
https://guangxuanx.com

mailto:xgx@mit.edu
http://guangxuanx.com

Large Language Models (LLMs) are Powerful

2

ChatBots Scientific Discovery

Software Development Disability AidTransformer-based

https://mcunet.mit.edu

LLM Models Outgrow Hardware Capacity
Reducing LLM serving cost is essential

3

• LLM sizes and computation are increasing exponentially.

• Domain-specific accelerator alone is not enough; we need efficient deployment algorithms to
bridge the gap.

0.01

0.1

1

10

100

1000

2017 2018 2020 2021 2022

Model Size
GPU Memory

GPT
0.11B

MegatronLM
8.3B

GPT-2
1.5B

M
od

el
 S

iz
e

(#
P

ar
am

s
in

BERT
0.34B

Transformer
0.05B

GPT-3
175B

MT-NLG
530B

T-NLG
17B

TPUv2
16GB

V100
32GB

TPUv3
32GB

A100
40GB

A100
80GB

We need efficient
algorithms to bridge
the gap.

Lo
g

sc
al

e

https://mcunet.mit.edu

Content
Today I will introduce:

• LLM Compression & Inference Speedup
• SmoothQuant: Accurate and Efficient Post-Training Quantization for Large

Language Models (ICML 2023)

• Efficient Application of LLMs for Extended Inputs
• Efficient Streaming Language Models with Attention Sinks (StreamingLLM)

(ICLR 2024)

4

https://mcunet.mit.edu

Guangxuan Xiao*1, Ji Lin*1, Mickael Seznec2, Hao Wu2, Julien Demouth2, Song Han1

SmoothQuant: Accurate and Efficient Post-
Training Quantization for Large Language Models

Massachusetts Institute of Technology¹

NVIDIA²

Quantization Can Reduce Deployment Costs
Quantization lowers the bit-width and improves efficiency

6

• Serving a 175B GPT-3 model at least requires:

• FP16: 350GB memory ➡ 5 x 80GB A100 GPUs

• INT8: 175GB memory ➡ 3 x 80GB A100 GPUs

https://mcunet.mit.edu

Naive Quantization Methods are Inaccurate
Activation outliers destroy quantized performance

7

- W8A8 quantization has been an industrial standard for CNNs, but not LLM. Why?

- Systematic outliers emerge in activations when we scale up LLMs beyond 6.7B. Traditional CNN
quantization methods will destroy the accuracy.

7

Understanding the Quantization Difficulty of LLMs
Smoothing activation to reduce quantization error

8

- Weights are easy to quantize, but activation is hard due to outliers

8

Activation

A
bs

ol
ut

e
Va

lu
e

70

Hard to quantize
Weight

Very easy to quantize

Original

Understanding the Quantization Difficulty of LLMs
Smoothing activation to reduce quantization error

9

- Weights are easy to quantize, but activation is hard due to outliers

- Luckily, outliers persist in fixed channels

9

Activation

A
bs

ol
ut

e
Va

lu
e

70

Hard to quantize
Weight

Very easy to quantize

Original

X0.1 X10

Understanding the Quantization Difficulty of LLMs
Smoothing activation to reduce quantization error

10

- Weights are easy to quantize, but activation is hard due to outliers

- Luckily, outliers persist in fixed channels

- Migrate the quantization difficulty from activation to weights, so both are easy to quantize

10

Activation Weight

A
bs

ol
ut

e
Va

lu
e

70

Hard to quantize
Weight

Very easy to quantize
Activation

Easy to quantize Harder but still easy to quantize

Migrate the quantization
difficulty

Original Smoothed

Q(W ⋅ X) → Q(W ⋅ s)(s−1 ⋅ X)

System Implementation
Efficient System Implementation

1111

FC1

LayerNorm

Q K V

BMM

Softmax

BMM

Projection

LayerNorm

ReLU

FC2

FP16

INT8

+ +

FC1

LayerNorm

Q K V

BMM

Softmax

BMM

Projection

LayerNorm

ReLU

FC2

FP16

INT8

+ +

- We integrate SmoothQuant into FasterTransformer

- All compute-intensive operators (Linear, BMM) are quantized

SmoothQuant is Accurate and Efficient

1212

• SmoothQuant well maintains the accuracy without fine-tuning.

• SmoothQuant can both accelerate inference and halve the memory footprint.

0

225

450

675

900

128 256 512 1024

720

366

194
122

848

432

228

139

FP16 (8 GPUs) SmoothQuant (4 GPUs)

0

100

200

300

400

128 256 512 1024

200189184182

389378372369

OPT-175B

M
em

or
y

(G
B

)

La
te

nc
y

(m
s)

OPT-175B BLOOM-176B GLM-130B

FP16 71.6% 68.2% 73.8%

SmoothQuant 71.2% 68.3% 73.7%

LAMBADA Accuracy

SmoothQuant is widely adopted by industry
• NVIDIA FasterTransformer

• NVIDIA TRT-LLM

• MLPerf 8-bit: closed the accuracy gap.

• Intel Neural Compressor / Q8-Chat on Xeon

• Meta/Microsoft/Amazon/HuggingFace …

13

Industry & Community Impact

Guangxuan Xiao¹, Yuandong Tian², Beidi Chen³, Song Han¹,4, Mike Lewis²

Efficient Streaming Language Models
with Attention Sinks

Massachusetts Institute of Technology¹

Meta AI²

Carnegie Mellon University³

NVIDIA4

Challenges of Deploying LLMs in Streaming Applications

• Urgent need for LLMs in streaming
applications such as multi-round
dialogues, where long interactions are
needed.

15
https://github.com/tomaarsen/attention_sinks

• Challenges:

• Extensive memory consumption during

the decoding stage.

• Inability of popular LLMs to generalize to

longer text sequences.

Challenges of Deploying LLMs in Streaming Applications

16

Challenges of Deploying LLMs in Streaming Applications

17

The Limits of Window Attention
• A natural approach — window attention: caching only the most recent Key-Value states.

• Drawback: model collapses when the text length surpasses the cache size, when the initial token

is evicted.

18

(b) Window Attention

⋯
L cached
tokens

⋯
T-L evicted

tokens

O(TL) PPL: 5158

Breaks when initial tokens
are evicted.

The “Attention Sink” Phenomenon
• Observation: initial tokens have large attention scores, even if they're not semantically significant.

• Attention Sink: Tokens that disproportionately attract attention irrespective of their relevance.

19

• Objective: Enable LLMs trained with a finite attention window to handle infinite text lengths
without additional training.

• Key Idea: preserve the KV of attention sink tokens, along with the sliding window's KV to
stabilize the model's behavior.

StreamingLLM: Using Attention Sinks for Infinite Streams

20

(d) StreamingLLM (ours)

Attention Sink

⋯
L cached
tokens

⋯
evicted
tokens

O(TL) PPL: 5.40
Can perform efficient and stable
language modeling on long texts.

Attention Sinks

0 1 2 3 4 5 6 7Generating
Token 7

0 1 2 3 4 5 6 7 8Generating
Token 8

0 1 2 3 4 5 6 7 8 9
Evicted Tokens Rolling KV Cache

Generating
Token 9

Streaming Performance

21

• Comparison between dense attention, window attention, and sliding window w/ re-computation.

• Dense attention fails beyond pre-training attention window size.

• Window attention fails after input exceeds cache size (initial tokens evicted).

• StreamingLLM shows stable performance; perplexity close to sliding window with re-computation baseline.

Streaming Performance
Super Long Language Modeling
• With StreamingLLM, model families include Llama-2, MPT, Falcon, and Pythia can now effectively

model up to 4 million tokens.

22

Efficiency
• Comparison baseline: The sliding window with re-computation, a method that is

computationally heavy due to quadratic attention computation within its window.

• StreamingLLM provides up to 22.2x speedup over the baseline, making LLMs for real-time

streaming applications feasible.

23

Conclusion
• We propose StreamingLLM, enabling the streaming deployment of LLMs.

• Paper: https://arxiv.org/abs/2309.17453

• Code: https://github.com/mit-han-lab/streaming-llm 6.7K Stars

• Demo: https://youtu.be/UgDcZ3rvRPg

• Integration:

• NVIDIA TensorRT-LLM

• Intel Transformer Extension

• Huggingface Transformers

24

https://arxiv.org/abs/2309.17453
https://github.com/mit-han-lab/streaming-llm
https://youtu.be/UgDcZ3rvRPg

Thanks for Listening!
•

25

0.01

0.1

1

10

100

1000

2017 2018 2020 2021 2022

Model Size
GPU Memory

GPT
0.11B

MegatronLM
8.3B

GPT-2
1.5B

M
od

el
 S

iz
e

(#
P

ar
am

s
in

BERT
0.34B

Transformer
0.05B

GPT-3
175B

MT-NLG
530B

T-NLG
17B

TPUv2
16GB

V100
32GB

TPUv3
32GB

A100
40GB

A100
80GB

We need efficient
algorithms to bridge
the gap.

Lo
g

sc
al

e

