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Large Language Models (LLMs) are Powerful
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LLM Models Outgrow Hardware Capacity 
Reducing LLM serving cost is essential 
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• LLM sizes and computation are increasing exponentially. 

• Domain-specific accelerator alone is not enough; we need efficient deployment algorithms to 
bridge the gap. 
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Content
Today I will introduce:

• LLM Compression & Inference Speedup 
• SmoothQuant: Accurate and Efficient Post-Training Quantization for Large 

Language Models (ICML 2023)


• Efficient Application of LLMs for Extended Inputs 
• Efficient Streaming Language Models with Attention Sinks (StreamingLLM) 

(ICLR 2024)

4

https://mcunet.mit.edu


Guangxuan Xiao*1,  Ji Lin*1, Mickael Seznec2, Hao Wu2, Julien Demouth2,  Song Han1

SmoothQuant: Accurate and Efficient Post-
Training Quantization for Large Language Models

Massachusetts Institute of Technology¹

NVIDIA²



 

Quantization Can Reduce Deployment Costs
Quantization lowers the bit-width and improves efficiency
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• Serving a 175B GPT-3 model at least requires: 

• FP16: 350GB memory ➡ 5 x 80GB A100 GPUs 

• INT8: 175GB memory ➡ 3 x 80GB A100 GPUs

https://mcunet.mit.edu


Naive Quantization Methods are Inaccurate
Activation outliers destroy quantized performance
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- W8A8 quantization has been an industrial standard for CNNs, but not LLM. Why? 

- Systematic outliers emerge in activations when we scale up LLMs beyond 6.7B. Traditional CNN 
quantization methods will destroy the accuracy. 
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Understanding the Quantization Difficulty of LLMs
Smoothing activation to reduce quantization error
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- Weights are easy to quantize, but activation is hard due to outliers 
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Understanding the Quantization Difficulty of LLMs
Smoothing activation to reduce quantization error
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- Weights are easy to quantize, but activation is hard due to outliers 

- Luckily, outliers persist in fixed channels 
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Understanding the Quantization Difficulty of LLMs
Smoothing activation to reduce quantization error
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- Weights are easy to quantize, but activation is hard due to outliers 

- Luckily, outliers persist in fixed channels 

- Migrate the quantization difficulty from activation to weights, so both are easy to quantize
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System Implementation
Efficient System Implementation
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- We integrate SmoothQuant into FasterTransformer 

- All compute-intensive operators (Linear, BMM) are quantized



SmoothQuant is Accurate and Efficient
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• SmoothQuant well maintains the accuracy without fine-tuning. 

• SmoothQuant can both accelerate inference and halve the memory footprint.
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SmoothQuant is widely adopted by industry
• NVIDIA FasterTransformer

• NVIDIA TRT-LLM

• MLPerf 8-bit: closed the accuracy gap.

• Intel Neural Compressor / Q8-Chat on Xeon

• Meta/Microsoft/Amazon/HuggingFace …
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Challenges of Deploying LLMs in Streaming Applications

• Urgent need for LLMs in streaming 
applications such as multi-round 
dialogues, where long interactions are 
needed.
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https://github.com/tomaarsen/attention_sinks

• Challenges:

• Extensive memory consumption during 

the decoding stage.

• Inability of popular LLMs to generalize to 

longer text sequences.



Challenges of Deploying LLMs in Streaming Applications
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Challenges of Deploying LLMs in Streaming Applications
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The Limits of Window Attention
• A natural approach — window attention: caching only the most recent Key-Value states.

• Drawback: model collapses when the text length surpasses the cache size, when the initial token 

is evicted.
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(b) Window Attention
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The “Attention Sink” Phenomenon
• Observation: initial tokens have large attention scores, even if they're not semantically significant.

• Attention Sink: Tokens that disproportionately attract attention irrespective of their relevance.
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• Objective: Enable LLMs trained with a finite attention window to handle infinite text lengths 
without additional training.


• Key Idea: preserve the KV of attention sink tokens, along with the sliding window's KV to 
stabilize the model's behavior.

StreamingLLM: Using Attention Sinks for Infinite Streams
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(d) StreamingLLM (ours)
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Streaming Performance
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• Comparison between dense attention, window attention, and sliding window w/ re-computation.


• Dense attention fails beyond pre-training attention window size.

• Window attention fails after input exceeds cache size (initial tokens evicted).

• StreamingLLM shows stable performance; perplexity close to sliding window with re-computation baseline.



Streaming Performance
Super Long Language Modeling
• With StreamingLLM, model families include Llama-2, MPT, Falcon, and Pythia can now effectively 

model up to 4 million tokens.
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Efficiency
• Comparison baseline: The sliding window with re-computation, a method that is 

computationally heavy due to quadratic attention computation within its window.

• StreamingLLM provides up to 22.2x speedup over the baseline, making LLMs for real-time 

streaming applications feasible.
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Conclusion
• We propose StreamingLLM, enabling the streaming deployment of LLMs.


• Paper: https://arxiv.org/abs/2309.17453 

• Code:  https://github.com/mit-han-lab/streaming-llm 6.7K Stars 

• Demo: https://youtu.be/UgDcZ3rvRPg 

• Integration: 

• NVIDIA TensorRT-LLM 

• Intel Transformer Extension 

• Huggingface Transformers
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Thanks for Listening!
•  
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