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In Memory Compute
Traditional ML 
Accelerators

Compute and Memory separate

Large NoC  data movement 
energy limits the accelerator

Analog 
In-Memory Compute

Digital 
In-Memory Compute

Compute and Memory co-located 
for low data movement energy

High DAC/ADC energy, noise, 
mismatch limit precision

Compute and Memory interleaved 
for lower data movement energy

Does not limit precision and 
benefits from technology scaling
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Need for Security

What Security is 
needed for Neural 

Networks?

Input Activations: Contains private information 
(face images, voice recordings, biometrics, etc.)

Model Weights: Trained using private dataset,
strategic IP for companies, can lead to adversarial 

attacks
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Proposed System
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Boolean Sharing Compute

Original Function
𝑡𝑡 = 𝐹𝐹(𝑏𝑏, 𝑐𝑐)

Shared Function
(𝑡𝑡1, 𝑡𝑡2, 𝑡𝑡3) = 𝐹𝐹𝑠𝑠𝑠((𝑏𝑏1,𝑏𝑏2,𝑏𝑏3), (𝑐𝑐1, 𝑐𝑐2, 𝑐𝑐3))

Split each data bit and computation into separately computed shares
Power consumption decorrelated from data

• Properties (for Practical Levels of Security)
- Correctness: 

• If 𝑏𝑏 = 𝑏𝑏1⨁𝑏𝑏2⨁𝑏𝑏3, 𝑐𝑐 = 𝑐𝑐1⨁𝑐𝑐2⨁𝑐𝑐3, Then 𝑡𝑡 = 𝑡𝑡1⨁𝑡𝑡2⨁𝑡𝑡3
- Non-Completeness: 

• If 𝐹𝐹𝑠𝑠𝑠  =  {𝐹𝐹1,𝐹𝐹2,𝐹𝐹3}, Then each of 𝐹𝐹𝑗𝑗 does not include all shares of each input
- Approximate Uniformity:

• For each sub-circuit, each shared output has the same distribution bias as the unshared output
• Outputs that are not jointly uniform are not combined directly
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Multiplier Optimization 

Addition, Accumulation use similar methods to reduce latency/eliminate random bits

Conventional: Shared AND gate Proposed: Shared XNOR gate

Random bit refreshing to maintain uniformity
Registers to maintain non-completeness

Standard bit-serial multiply for digital IMC

Can cascade to next gate without registers 

1 multiply = 48 gate-equivalents

Shares maintain uniformity without random bits

1 multiply = 6 gate-equivalents
Need data format conversion at macro interface 
Negligible effect on NN accuracy
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Model Decryption for BPA Security

① Secure Write Reset
 Write fixed value to remove data dependence 

② PUF Evaluation
Cut and reconnect feedback transistor

Settles to 0 or 1 since + or – side stronger due to local mismatch
③ Standard Read

Use differential temporal majority voting for security

Secure Key Generated On-Chip
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Fabricated IC + Evaluation Setup
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IMC Performance

Throughput
(GOPS)

0.55 V, 80 MHz

Unprotected 41.0 (4b weight, 1b act)
9.10 (4b weight, 8b act)

Protected 81.9 (4b weight, 1b act)
10.2 (4b weight, 8b act)

Energy Efficiency 
(TOPS/W)

0.55 V, 80 MHz

Unprotected 90.2 (4b weight, 1b act)
14.4 (4b weight, 8b act)

Protected 6.94 (4b weight, 1b act)
0.89 (4b weight, 8b act)

Area Efficiency 
(TOPS/mm2)

0.55 V, 80 MHz

Unprotected 3.01 (4b weight, 1b act)
0.67 (4b weight, 8b act)

Protected 0.49 (4b weight, 1b act)
0.061 (4b weight, 8b act)

Frequency limited by 
test setup
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Security Evaluation



• Generalized IMC solution for ML with Privacy & Integrity
• Side Channel and Bus Probing Attack Security for In Memory 

Compute
• No random bits from PRNGs required
• No limitations on neural network accuracy

• Future Improvements
• More exploration of tradeoffs between security and 

area/energy overheads
• Usage of approximate compute for further exploitation of 

natively secure compute gates
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Conclusion + Future Work
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