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In Memory Compute
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Large NoC > data movement for low data movement energy for lower data movement energy
energy limits the accelerator High DAC/ADC energy, noise, Does not limit precision and
mismatch limit precision benefits from technology scaling
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Need for Security
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Input Activations: Contains private information
(face images, voice recordings, biometrics, etc.)

Model Weights: Trained using private dataset,
strategic IP for companies, can lead to adversarial
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Proposed System
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Secure IMC Secure Key Generation On-Chip
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Boolean Sharing Compute

Split each data bit and computation into separately computed shares
Power consumption decorrelated from data

Original Function Shared Function
t =F(b,c) (¢!, ¢%,t%) = F"((b*, 0%, b®), (¢!, ¢2, ¢3))

* Properties (for Practical Levels of Security)

- Correctness:
e Ifb = bIPb*Pb3,c = c1Pc?°Pc3, Thent = t1Pt?*Pt3

- Non-Completeness:
e IfFSh = {F1, F?, F3}, Then each of F/ does not include all shares of each input

- Approximate Uniformity:
* For each sub-circuit, each shared output has the same distribution bias as the unshared output
* Qutputs that are not jointly uniform are not combined directly
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Multiplier Optimization

Conventional: Shared AND gate Proposed: Shared XNOR gate
4
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al wl a2 w a3 wl
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pp’ pp* pp’
XNOR is linear —shares are not combined

clk

\ pp° \/
X « Can cascade to next gate without registers
X Registers to maintain non-completeness & 1 multiply = 6 gate-equivalents
X 1 multiply = 48 gate-equivalents — Need data format conversion at macro interface
& Standard bit-serial multiply for digital IMC Negligible effect on NN accuracy

Addition, Accumulation use similar methods to reduce latency/eliminate random bits
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Model Decryption for BPA Security

Digital In Memory Compute Array + PUF
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Complete Model
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Secure Key Generated On-Chip

[ Feedback-Cut PUF A

(SCA secure bitcell in V. Rozic et al., HOST 2012.)

BL +

(D) Secure Write Reset
Write fixed value to remove data dependence
(2) PUF Evaluation
Cut and reconnect feedback transistor
Settles to 0 or 1 since + or - side stronger due to local mismatch
() Standard Read
Use differential temporal majority voting for security
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Fabricated IC + Evaluation Setup
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IMC Performance
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Security Evaluation

Test Vector Leakage Assessment

Aufixed — Hrandom

PUF Security Analysis

Passes all applicable NIST Tests
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Conclusion + Future Work

« Generalized IMC solution for ML with Privacy & Integrity

- Side Channel and Bus Probing Attack Security for In Memory
Compute

« No random bits from PRNGs required
 No limitations on neural network accuracy

 Future Improvements

- More exploration of tradeoffs between security and
area/energy overheads

» Usage of approximate compute for further exploitation of
natively secure compute gates
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