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The Physical Limits of Computing

Dennard Scaling
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Programmable Photonics, AI, and the Future of Computing

▶ Leverage the bandwidth and data movement advantages of photonics in
an analog compute paradigm.

▶ Challenge: achieving nonlinearity, programmability, and scalability in a
single platform.



Background: Programmable Photonics

The difference between “computers” and other types of machines
is that computers are programmable.

▶ Modern foundry processes (esp. SiPh) have made
“programmable photonics” a new reality.

▶ But photonic components are NOT small or cheap! Need to
economize.

Raises the question: what is the “optimal” photonic circuit for a
given task?
▶ In general, problems of this nature are either:

▶ NP-hard (layout problem, for gate circuits)
▶ Uncomputable (Kolmogorov complexity, for Turing machines).

▶ Hard to generically answer the question.



Specific Example: Multiport Interferometer

Definition: any feedforward linear optical circuit with N input- and
M output-ports.

▶ Emulates matrix multiplication yN = AM×NxN .

▶ Can be fixed (e.g. AWG) or programmable.

Many functions:

▶ Optical neural networks (of course!)

▶ Boson sampling, LOQC

▶ Optical signal processing

▶ Mode sorting, MIMO

A good specific case study to examine the question of optimal
photonic circuits.
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What makes a multiport interferometer optimal?

Various Factors:

▶ Universality

▶ Size / Shape

▶ Error Robustness

▶ BW / length-matching

▶ Programming algorithm

▶ Efficient use of phase shift



What makes a multiport interferometer optimal?

Unitary Generic
Reck Clements MPLC Fldzhyan Blass PILOSS

Size triangle square ?? square diamond square
ER∗ good good great great great good
LM† N Y maybe Y N Y
Alg‡ easy moderate hard hard easy iterative

∗ER: error robustness. †LM: length-matching. ‡Alg: algorithm. Many mesh
topologies considered.1 Previous questions on error robustness of meshes2 were
resolved by our group’s work on photonic hardware error correction3.

1
M. Reck, PRL 73, 58 (1994); W. Clements, Optica 3(12), 1460 (2016).; R. Tanomura, JLT 38(1), 60

(2020); S. Fldzhyan, Opt. Lett. 45, 2632 (2020); J. Blass, in IRE Int. Conv. Record 8(1), 48 (1960); K. Suzuki,
Opt. Exp. 22(4), 3887 (2014).

2
M. Fang, Opt. Exp. 27, 14009 (2019).

3
S. Bandyopadhyay et al., Optica 8(10), 1247 (2021); R. Hamerly et al., PRApp 18, 024019 (2022);

R. Hamerly et al., Nat. Comm. 13 (2022).

https://doi.org/10.1103/PhysRevLett.73.58
https://doi.org/10.1364/OPTICA.3.001460
https:doi.ord/10.1109/JLT.2019.2943116
https:doi.ord/10.1109/JLT.2019.2943116
https://doi.org/10.1364/OL.385433
https://doi.org/10.1109/IRECON.1960.1150892
https://doi.org/10.1364/OE.22.003887
https://doi.org/10.1364/OE.27.014009
https://doi.org/10.1364/OPTICA.424052
https://doi.org/10.1103/PhysRevApplied.18.024019
https://doi.org/10.1038/s41467-022-34308-3


What makes a multiport interferometer optimal?

Various Factors:

▶ Universality

▶ Size / Shape

▶ Error Robustness
⇒ focus of this talk

▶ BW / length-matching

▶ Programming algorithm

▶ Efficient use of phase shift
⇒ focus of this talk



(Part I) Programmable Photonics and Error Robustness



(Part I) Programmable Photonics and Error Robustness

A big problem of meshes: hardware
errors

▶ Analog systems: subject to errors

▶ Light passes through O(N)
components

▶ Interferometric

▶ Hardware errors cascade down
light path

▶ Calibration is hard

M. Fang, Opt. Exp. 27, 14009 (2019).

https://doi.org/10.1364/OE.27.014009


Hardware Error Correction

▶ If errors are known, then there is a fast,
easy way to correct them.

▶ But relies on accurate pre-calibration.

S. Bandyopadhyay et al., Optica 8(10), 1247
(2021).

https://doi.org/10.1364/OPTICA.424052
https://doi.org/10.1364/OPTICA.424052


Error Correction by Self-Configuration
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Through a feedback mechanism,

▶ It is possible to correct errors by self-configuring without calibration

▶ Never learn what the errors are! More robust.

R. Hamerly et al., PRApp 18, 024018 (2022); PRApp 18, 024019 (2022).

https://doi.org/10.1103/PhysRevApplied.18.024018
https://doi.org/10.1103/PhysRevApplied.18.024019


Asymptotic Fault-Tolerance of 3-MZI Mesh
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Adding third splitter to each MZI:

1. Mobius transform to locally Cartesian frame, high ER

2. Facilitates error correction, asymptotically fault-tolerant

R. Hamerly et al., Nat. Comm. 13 (2022).

https://doi.org/10.1038/s41467-022-34308-3


Error-Aware “Corner Training” for Meshes

1. Train on ideal circuit,
errors degrade
performance
(“uncorrected”)

2. Train on ideal circuit,
use hardware error
correction to mitigate
errors on real HW
(“corrected”)

3. Train on circuit with
large fixed errors, use
HEC to eliminate errors
on real HW (“corner”)

S. Vadlamani et al., Sci. Adv. 9, eadh3436 (2023)

https://doi.org/10.1126/sciadv.adh3436


(Part II) Programmable Photonics and “Efficiency”



(Part II) Programmable Photonics and “Efficiency”

In photonics, ∆n ≪ 1, which means phase is expensive. In general, it is hard to
make phase shifters that are simultaneously

1. low-loss,

2. compact,

3. low-power,

4. fully [0, 2π)-tunable, and

5. fast.

Cost of phase depends on the platform:

▶ Thermo-optic phase shifters: heater power P = Pπ × ψ/π, with typical
Pπ = 20 mW. (For a 64x64 Clements mesh, that’s a total of 80 W!).
Sensitive to total phase

∑
i ψi .

▶ MOSCAP & PCM phase shifters. These phase shifters induce a loss
α = απ × ψ/π. Total loss is sensitive to total phase. Also can lead to

unbalanced-loss errors, sensitive to RMS phase
(∑

i ψ
2
i

)1/2
.

▶ Pockels phase shifters. Here, phase is limited by voltage via VπL. Hence,
the maximum phase ψmax (usually 2π) is most relevant.



Summary of Argument

1. System: Multiport Interferometer ⇔ a map between a set of
phase shifts {ψi} and a unitary matrix U.

2. Objective: Minimize the phase shift, quantified by moments

∥ψ∥0 = |ψ|max, ∥ψ∥1 =
∑

i |ψi |, ∥ψ∥2 =
(∑

i ψ
2
i

)1/2
assuming some distribution of target matrices (here
Haar-random unitaries).

3. SoA: Reck and Clements MZI meshes.

4. Improvement: Use of 3-MZI instead of MZI in meshes.

5. Bound: Derive lower bounds on the moments of ψ based on
information entropy. Show that the proposed 3-MZI mesh is
near-optimal when compared to this bound.
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FOM 1: L∞ Norm

L∞ norm is defined by the peak-to-peak variation
of ψ: ψpp ≡ 2∥ψ∥∞ ≡ ψmax − ψmin

▶ Fast lossless pure-phase modulation (Pockels,
piezo-optomechanical) is very inefficient, e.g.
∆n ∼ 10−4.

▶ If full 2π tunability (ψ ∈ [−π,+π], ψpp = π),
is required, the phase-shifter length is limited
by:

L ≥ 2VπL

Vpp

which leads to a severe voltage-length
tradeoff.

▶ If phase range can be reduced to ψpp ≪ π,
then L → Lψpp/π reduces correspondingly.

Here, we use the IQR as a stand-in for ψpp.

R. Wu, Opt. Lett. 44, 4698 (2019).

M. Dong, Nat. Phot. 16, 59 (2022).

https://doi.org/10.1364/OL.44.004698
https://doi.org/10.1038/s41566-021-00903-x


FOM 2: L1 Norm

L1 norm is defined by the mean value of |ψ|:
∥ψ∥1 = ⟨|ψ|⟩. This affects:

▶ Average per-MZI heating power of TOPS
meshes:

PMZI = Pπ∥ψ∥1/π
Typically Pπ ≈ 20 mW, although underetch
can reduce this by about 10×. Total power is
multiplied by the number of MZIs:
N(N − 1)/2.

▶ Average excess loss due to phase shifts on
lossy platforms such as MOSCAPs, where
α ∝ ψ:

αMZI = απ∥ψ∥1/π
For silicon MOSCAP, απ ∼ 1 dB. For III-V
MOSCAP, απ = 0.23 dB. The total mesh loss
is multiplied by the number of columns
αtot = (Nαπ/π)∥ψ∥+ απ.

N. Harris, Opt. Exp. 22, 10487 (2014).

M. Takenaka, JLT 37(5), 1474 (2019).

https://doi.org/10.1364/OE.22.010487
https://doi.org/10.1109/JLT.2019.2892752


FOM 3: L2 Norm

L2 norm is defined by the RMS mean value of
|ψ|: ∥ψ∥2 = ⟨|ψ|2⟩1/2. This affects:

▶ The average “uncorrectable” error due to
lossy phase shifters. Each lossy phase
shifter induces an uncorrectable
non-unitary error ∥∆Ups∥ = απ|ψ|/2π.

▶ The errors add in quadrature, so
E = ⟨∥∆Ups∥⟩/

√
N is given by:

E = απ
√

N∥ψ∥2/2π

This is a quadrature sum of the MZI
errors and the errors due to the random
phase screen.

(splitter)

(p
ha
se
)

DAC
θ

φ

For discussion on non-unitary errors and
correction, see:
R. Hamerly et al., PRApp 18, 024019 (2022).

https://doi.org/10.1103/PhysRevApplied.18.024019


Summary of Argument

1. System: Multiport Interferometer ⇔ a map between a set of
phase shifts {ψi} and a unitary matrix U.

2. Objective: Minimize the phase shift, quantified by moments

∥ψ∥0 = |ψ|max, ∥ψ∥1 =
∑

i |ψi |, ∥ψ∥2 =
(∑

i ψ
2
i

)1/2
assuming some distribution of target matrices (here
Haar-random unitaries).

3. SoA: Reck and Clements MZI meshes.

4. Improvement: Use of 3-MZI instead of MZI in meshes.

5. Bound: Derive lower bounds on the moments of ψ based on
information entropy. Show that the proposed 3-MZI mesh is
near-optimal when compared to this bound.



Splitting Ratios in Reck/Clements MZI meshes

A mesh is a cascade of 2× 2 crossings
U =

∏
m Tm, where

T =

[
r t
t′ r ′

]
For Haar-random U, r is the quotient of two
χ2-distributed random variables Xk ∼ χ2(k):

r =
X1

X1 + Xk

and is given by [11]

P(|r |) = 2k|r |(1− |r |2)k−1 (1)

This clusters near r = 0 (crossing state) for
large k. A Reck / Clements mesh has
N − k − 1 MZIs of order k
⇒ in large meshes, most MZIs are crosslike.

P(r)

r

1

2

3

4

5

k=12
3
4
5θφ

=

M. Reck, PRL 73, 58 (1994)
W. Clements, Optica 3(12), 1460 (2016)
N. Russell, NJP 19(3), 033007 (2017)

https://doi.org/10.1103/PhysRevLett.73.58
https://doi.org/10.1364/OPTICA.3.001460
https://doi.org/10.1088/1367-2630/aa60ed


Regular MZI

An internal phase shifter θ to control the magnitude
|r |, and an external shifter ϕ to control its phase.

TMZI =
1

2

[
1 i
i 1

] [
e iθ 0
0 1

] [
1 i
i 1

] [
e iϕ 0
0 1

]
= ie iθ/2

[
e iϕ sin(θ/2) cos(θ/2)
e iϕ cos(θ/2) − sin(θ/2)

]
Magnitude |r | = sin(θ/2) only depends on θ, while
ϕ only affects the angle arg(r) = ϕ+ θ/2.

▶ For small r ,

▶ θ ≈ 0
▶ ϕ ∈ [0, 2π) uniform

⇒ average phase shift of π/2

▶ Full control over amplitude and phase of
splitting ratio: s ≡ r/t = e iϕ tan(θ/2) ⇒
easy to program & self-configure.
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Summary of Argument

1. System: Multiport Interferometer ⇔ a map between a set of
phase shifts {ϕi} and a unitary matrix U.

2. Objective: Minimize the phase shift, quantified by moments

∥ψ∥0 = |ψ|max, ∥ψ∥1 =
∑

i |ψi |, ∥ψ∥2 =
(∑

i ψ
2
i

)1/2
assuming some distribution of target matrices (here
Haar-random unitaries).

3. SoA: Reck and Clements MZI meshes.

4. Improvement: Use of 3-MZI instead of MZI in meshes.

5. Bound: Derive lower bounds on the moments of ψ based on
information entropy. Show that the proposed 3-MZI mesh is
near-optimal when compared to this bound.



3-MZI

A third splitter encloses the “external” MZI:a

T3-MZI =
1

23/2

[
1 i
i 1

] [
e iθ 0
0 1

] [
1 i
i 1

] [
e iϕ 0
0 1

] [
1 i
i 1

]

=
e i(θ+ϕ)/2

√
2

[
−cos

( θ−ϕ
2

)
+ i sin

( θ+ϕ
2

)
−sin

( θ−ϕ
2

)
+ i cos

( θ+ϕ
2

)
sin

( θ−ϕ
2

)
+ i cos

( θ+ϕ
2

)
−cos

( θ−ϕ
2

)
− i sin

( θ+ϕ
2

)]
(2)

Now, for r ≈ 0, the dependence is locally Cartesian.
The cross-state r = 0 does not lie at a singularity
|∂(r , r∗)/∂(θ, ϕ)| = 0, as in the MZI. Implications:

▶ Intrinsic robustness to hardware errors.b

▶ Distributions of (θ, ϕ) are more compact
⇒ can implement a mesh with less phase.

a
K. Suzuki, Opt. Exp. 23, 9086 (2015).

b
R. Hamerly, Nat. Comm. 13 (2022).
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https://doi.org/10.1364/OE.23.009086
https://doi.org/10.1038/s41467-022-34308-3


Relation to Möbius Transformations

The math is simpler when we work with
splitting ratios s = r/t.

▶ Ratio denotes equivalence class w.r.t.
external phase shifts, if s = s ′,
T = T ′e iΨ.

▶ For standard MZI, s = e iϕ tan(θ/2),
phase shifts independently control
magnitude and phase of s.

▶ Prepending a splitter performs the
Möbius transformation

s3-MZI =
sMZI + i

1 + isMZI
≈ − i

2
(∆θ + i∆ϕ)

⇒ 90o rotation of Riemann sphere.
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Relation to Möbius Transformations

This shows the same insight in a different basis.

▶ MZI maps (θ, ϕ) → s via polar coordinates (bad).

▶ 3-MZI maps (θ, ϕ) → s via (locally) Cartesian coordinates (good).

1 0    +1

i

i

+i

+i
MZI 3-MZI

Contours

0.0

0.2

0.4

0.6

0.8

1.0

P(
s)

 (a
.u

., 
N

=
16

)



Probability Density in (θ, ϕ)

0
0

2

Ph
as

e 
sh

ift
 

N = 4

0
Phase shift 

N = 16

P( , ), MZI

0

N = 64

0

N = 256

0
0

2

Ph
as

e 
sh

ift
 

N = 4

0
Phase shift 

N = 16

P( , ), 3-MZI

0

N = 64

0

N = 256



Dual-Drive MZI & 3-MZI: minimizing total phase
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▶ Final problems: (i) residual phase shifts on 3MZI, i.e. phase range is
small, but overall phase is still large.

▶ Fix with a phase offset and a dual-drive configuration:

ψ± =

{
±ψ/2 Push-Pull (PP)

max(±ψ, 0) Single-Arm (SA)



Comparison of MZIs on FOMs
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Comparison of MZIs on FOMs
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√
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▶ With dual-drive and 3-MZI, average phase scales as 1/
√
N rather than a

constant.



Numerical Simulations and Scaling

𝑁
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Look at large mesh sizes with Haar-random target unitaries.

▶ ∥ψ∥ ∼ O(1) for MZI, O(1/
√
N) for 3-MZI.

▶ Roughly 10× reduction of all moments ∥ψ∥1, ∥ψ∥2, ψpp,IQR for large
meshes N ≳ 256, when using the 3-MZI.



Summary of Argument

1. System: Multiport Interferometer ⇔ a map between a set of
phase shifts {ϕi} and a unitary matrix U.

2. Objective: Minimize the phase shift, quantified by moments

∥ψ∥0 = |ψ|max, ∥ψ∥1 =
∑

i |ψi |, ∥ψ∥2 =
(∑

i ψ
2
i

)1/2
assuming some distribution of target matrices (here
Haar-random unitaries).

3. SoA: Reck and Clements MZI meshes.

4. Improvement: Use of 3-MZI instead of MZI in meshes.

5. Bound: Derive lower bounds on the moments of ψ based
on information entropy. Show that the proposed 3-MZI
mesh is near-optimal when compared to this bound.



Method for Deriving a Lower Bound

We find a bound for the moments of ψ (i.e. the total phase shift)
by examining the map f : RN2 → U(N) that maps phase shifts
{ψk} to unitaries U. The procedure involves two steps:

1. Show that the map f is contractive, and calculate the
minimum loss information entropy ∆H.

2. Use this entropy to find a lower bound for the moments of ψ.

U(1)N² U(N)

ψ
f

U



The Contractive Map f

We care about the contraction of f , i.e. how it
maps volumes on RN2

to U(N). These two are
related by:

dVU = | det(J)|dVψ
J = ∂(U)/∂(ψ) is the Jacobian.
Note that, for dual-drive modulation, the
dependence of U on any ψi takes the form:

U = Upost

[
e iψi/2 0

0 e−iψi/2

]
Upre (3)

Since Upre & Upost are unitary, ∥∆U∥ = 2−1/2∆ψi ,
and therefore |∇ψi f | = 2−1/2 along all directions
ψi , so the map is contractive.
(A more generic formula, which does not rely on
dual-drive modulation, leads to a contraction by 1
along all directions, and bounds that are looser by
a factor of

√
2.)

u

v

w

∇uf ∇vf

∇wf

U
(1)

N
²

U
(N
)

ψ

f

U



The Contractive Map f (cont.)

Minimum Contraction

▶ To keep the phase shifts small, we want a
mapping (i.e. an architecture) that minimizes
the contraction.

▶ This happens when the ∇ψi f are all
orthogonal, so the compression factor is

|det(J)| = 2−N2/2 (2−1/2 per phase shifter).

Information Entropy

▶ Defined by H = −
∫
P log(P)dV

▶ Can related the entropy of distribution P(U)
to the pullback P(ψ) using the relation
P(ψ)dψ = P(U)dU:

u

v

w

∇uf ∇vf

∇wf

U
(1)

N
²

U
(N
)

ψ

f

U

Hψ = −
∫

P(ψ) logP(ψ)dVψ = −
∫ [

P(U) log
(P(ψ)

P(U)

)
+ P(U) logP(U)

]
dVU

= HU +
〈
log

1

| det(J)|
〉

︸ ︷︷ ︸
∆H

≥ HU + (N2/2) log(2)︸ ︷︷ ︸
Hψ,min



The Contractive Map f (cont.)

Start with the entropy bound

Hψ = HU +
〈
log

1

| det(J)|
〉

First we get HU , using the volumea of U(N) and
Stirling’s approximation:

vol(U(N)) = (2π)N(N+1)/2
N−1∏
k=1

1

k!

⇒ HU = − log[vol(U(N))] =
N2

2
log

(2πe3/2
N

)
Given |det(J)| ≤ 2−N2/2, we find:

Hψ > Hψ,min =
N2

2
log

(4πe3/2
N

)
for all pullbacks ψ of the Haar measure.

a
L. Boya, Rpt. Math. Phys. 52(3), 401 (2003).
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∇uf ∇vf

∇wf

U
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N
²

U
(N
)
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f

U

https://doi.org/10.1016/S0034-4877(03)80038-1


Bound on Moments

Getting the minimum moment (or other positive-definite function∫
p(x)f (x)dx) at a fixed entropy H = −

∫
p(x) log p(x)dx is a constrained

optimization problem. Use Lagrange multipliers:

min
p

∫
p(x)f (x)dx s.t.

{∫
p(x)dx = 1∫
p(x) log p(x)dx = −H

⇒ ∇λ,µ,p

∫
p(x)

[
f (x) + λ+ µ log p(x)

]
dx = 0

⇒ ∇λ,µ

(
min
p

∫
p(x)

[
f (x) + λ+ µ log p(x)

]
dx

)
= 0

Analytic solution takes the form

p(x) = exp
(
−(f (x) + λ+ µ)/µ

)
where (λ, µ) are set to satisfy the constraints.



Bound on Moments

Procedure:

1. Find analytic form p(x) = exp
(
−(f (x) + λ+ µ)/µ

)
(f (x) = |x |, x2, etc.)

2. Set λ, µ to satisfy constraints (normalization, entropy)

3. Plug in Hψ,min = 1
2
log(4πe3/2/N).

(L1 norm)

▶ Functional form: exponential
p = (2a)−1e−|x|/a

▶ Entropy is log(2ea)

▶ Moment is given by

⟨|x |⟩ = a = eH−1/2

∥ψ∥1 >
√

π

e1/2N
≈ 1.38√

N

(L2 norm)

▶ Functional form: Gaussian
p = (

√
2πσ)−1e−x2/2σ2

.

▶ Entropy is 1
2
log(2πeσ2)

▶ Moment is given by

⟨|x |⟩ = σ = eH−1/2/
√
2π

∥ψ∥1 >
√

2e1/2

N
≈ 1.82√

N



Phase Moments vs. Information Bound
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3-MZI comes within a factor of 2× of the bound. MZI is way off.

∥ψ∥1
∥ψ∥1,min

N→∞−→ 16e1/4

3π
≈ 2.20,

∥ψ∥2
∥ψ∥2,min

N→∞−→
√

2e−1/2 log(N/N ′′
0 )



Conclusions

The new contributions of this work are:

▶ Systematically studied the problem of phase-shifter economy
in photonic architectures.

▶ Proposed a new MZI mesh architecture (3-MZI) that is more
efficient than standard meshes, both in absolute terms and
scaling.

▶ Derived lower bounds for the phase-shifter moments,
answering the question “How much phase does programmable
photonics need?”, using information theory.

▶ Showed that the 3-MZI nearly saturates these theoretical
bounds.



Future Steps

Hmmm? Definitely need to look at:

▶ Other mesh geometries. Preliminary results show 3-MZI
nonunitary meshes can saturate the information bound with
certain target matrix distributions.

▶ How close do non-mesh schemes (programmable MMI,
diffractive network, MPLC) come to the bound?

▶ Generalization to nonlinearity?

▶ Neural network training subject to L∞ bounds?
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But wait, there’s more!



Phase-Efficient Non-Unitary Meshes

▶ Most optics literature
focuses on unitaries.

▶ But applications are
usually non-unitary

▶ Crossbar (diamond,
PILOSS) can
accommodate non-unitary
meshes

▶ Can also be
phase-efficient!
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(a) Diamond and (b) PILOSS mesh. (c) Crossing type.



Phase-Efficient Non-Unitary Meshes

Di
am

on
d

N = 4 N = 8 N = 16

PI
LO

SS

N = 64

32
16
8
4

P( ) ( / max = 0.8)

0.2 0.0 0.2
,

10 1 100
/ max

2.0

2.1

2.2

2.3

2.4

2.5

2.6

2/

Diamond
PILOSS
Bound (PP)

0.0 0.2 0.4 0.6
| |, | |

(a) (b) (c)

Non-unitary random matrices M (Mij std. dev. σ) realized with 3-MZI diamond
/ PILOSS meshes:

▶ Marchenko-Pastur theory: σmax ∼ 1/
√
N for |M| < 1.

▶ Average phase shift decreases as ⟨ψ⟩ ∼ 1/
√
N

▶ Information-entropy bound: ⟨ψ⟩ = 2σ. 3-MZI saturates the bound.

Our architecture is not just near-optimal, but actually optimal.



L∞-constrained Neural Network Training

U1 U2 "4"
FFT

N N
10

𝑁× 𝑁28×28

“Hard” phase bound ψ < ∥ψ∥∞ is
much more difficult than reducing
average phase

▶ Mesh is no longer universal

But L∞-constrained training works!

▶ 2-layer N × N Clements network

▶ MNIST, FMNIST, KMNIST

▶ High accuracy down to 0.1 rad

▶ Required phase decreases with N
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