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Transformers are ubiquitous



LLM training process

Training LLMs is done using an iterative process, based on gradient descent
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Memory bottlenecks

Memory usage adds up, even for moderate-sized LLMs:

varies 1 float/parameter 1 float/parameter ~2 float/parameter
140 GB (70B) 140 GB (70B) 280 GB (70B)
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Memory bottlenecks

Memory usage adds up, even for moderate-sized LLMs:

varies 1 float/parameter 1 float/parameter ~2 float/parameter
140 GB (70B) 140 GB (70B) 280 GB (70B)

So as models become larger, we are increasingly bottlenecked by memory, a
precious resource in GPUs

A100/H100 (~80GB) H200 (~140GB) B200 (~190GB)
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Memory bottlenecks

Memory usage adds up, even for moderate-sized LLMs:

varies 1 float/parameter 1 float/parameter ~2 float/parameter
140 GB (70B) 140 GB (70B) 280 GB (70B)

So as models become larger, we are increasingly bottlenecked by memory, a
precious resource in GPUs

A100/H100 (~80GB) H200 (~140GB) B200 (~190GB)

This has motivated a range of work in memory-efficient training methods that
decouple model size from the hardware used to train them
IMir
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Relating memory-efficient methods

In a recent preprint (Torroba-Hennigen et al., 2025), we develop an equivalence
between two classes of memory-efficient training methods:
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Adapter-based

(change model) | ;‘% + - .

e.g. LoRA (Hu et al.,, 2021)
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between two classes of memory-efficient training methods:

Adapter-based

(change model) | :% + - .

e.g. LoRA (Hu et al.,, 2021)

Gradient-based Opt. state
(change optimizer)

e.g., Galore (Zhao et al,, 2024) Optimizer — m Optimizer i\ .

Opt. state
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Relating memory-efficient methods

In a recent preprint (Torroba-Hennigen et al., 2025), we develop an equivalence
between two classes of memory-efficient training methods:

Adapter-based

(change model) W - W + AST

e.g. LoRA (Hu et al.,, 2021)

&
Gradient-based

(change optimizer) n (W) — n (Ws)sT

e.g., Galore (Zhao et al,, 2024)
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Relating memory-efficient methods

In a recent preprint (Torroba-Hennigen et al., 2025), we develop an equivalence
between two classes of memory-efficient training methods:

Adapter-based

(change model) W - W + AST

e.g. LoRA (Hu et al.,, 2021)

—

Gradient-based

(change optimizer) n (W) — n (Ws)sT

e.g., Galore (Zhao et al,, 2024)

This duality allows us to use insights from one method to improve the other
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Improvements via quantization

Drawing from the adapter literature (e.g., QLORA; Dettmers et al., 2023), we can
improve gradient-based approaches by adding quantization
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Opt. state
= 2
vw 8 opimizer & B IR + Dl
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Improvements via quantization

Drawing from the adapter literature (e.g., QLORA; Dettmers et al., 2023), we can
improve gradient-based approaches by adding quantization

Opt. state
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vw 8 opimizer & B IR + Dl
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Improvements via rematerialization

Drawing from the gradient-based efficient training literature, we can consider
other choices of projections that can be implemented better in hardware
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Improvements via rematerialization

Drawing from the gradient-based efficient training literature, we can consider
other choices of projections that can be implemented better in hardware

vw g B optimizer g o i I

This reduces memory consumption and (potentially) memory movement
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Improving distributed training

We also find that for distributed training with poorly connected, memory-
constrained workers, choosing the right projections is important

VW i Optimizer i aw i

Opt. state
m Optimizer g aw

Opt. state

m-» Optimizer M‘
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Improving distributed training

We also find that for distributed training with poorly connected, memory-
constrained workers, choosing the right projections is important

VW g g Optimizer o aw g vW Optimizer 4 aw 2

Opt. state Opt. state

- Em e ¢ -
Opt. state Opt. state
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Future work

Some directions we are considering to pursue next:

1. Single-node setting
« More complex projections
 In-register rematerialization

2. Distributed setting
« Reduce communication cost
« Reduce stall time when synchronizing gradients
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Thanks!
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