
Hardware-efficient Neural
Architectures for Language

Modeling
Lucas Torroba-Hennigen, PhD Candidate, MIT CSAIL

Transformers are ubiquitous

LLM training process
Training LLMs is done using an iterative process, based on gradient descent

Input

Prediction

(Intermediate)
Activations

Forward pass

LLM training process
Training LLMs is done using an iterative process, based on gradient descent

Input

Prediction

(Intermediate)
Activations

Target

Gradients

Forward pass Backward pass

LLM training process
Training LLMs is done using an iterative process, based on gradient descent

Input

Prediction

(Intermediate)
Activations

Target

Gradients Optimizer

Forward pass Backward pass Update step

Memory bottlenecks

Gradients

1 float/parameter
140 GB (70B)

Model

1 float/parameter
140 GB (70B)

Optimizer states

~2 float/parameter
280 GB (70B)

Activations

varies

Memory usage adds up, even for moderate-sized LLMs:

Memory bottlenecks

So as models become larger, we are increasingly bottlenecked by memory, a
precious resource in GPUs

A100/H100 (~80GB) H200 (~140GB) B200 (~190GB)

Gradients

1 float/parameter
140 GB (70B)

Model

1 float/parameter
140 GB (70B)

Optimizer states

~2 float/parameter
280 GB (70B)

Activations

varies

Memory usage adds up, even for moderate-sized LLMs:

Memory bottlenecks

So as models become larger, we are increasingly bottlenecked by memory, a
precious resource in GPUs

This has motivated a range of work in memory-efficient training methods that
decouple model size from the hardware used to train them

A100/H100 (~80GB) H200 (~140GB) B200 (~190GB)

Gradients

1 float/parameter
140 GB (70B)

Model

1 float/parameter
140 GB (70B)

Optimizer states

~2 float/parameter
280 GB (70B)

Activations

varies

Memory usage adds up, even for moderate-sized LLMs:

Relating memory-efficient methods
In a recent preprint (Torroba-Hennigen et al., 2025), we develop an equivalence
between two classes of memory-efficient training methods:

Relating memory-efficient methods
In a recent preprint (Torroba-Hennigen et al., 2025), we develop an equivalence
between two classes of memory-efficient training methods:

Adapter-based
(change model)

e.g., LoRA (Hu et al., 2021)

W W
❆

Relating memory-efficient methods
In a recent preprint (Torroba-Hennigen et al., 2025), we develop an equivalence
between two classes of memory-efficient training methods:

𝛁𝛁W

Adapter-based
(change model)

e.g., LoRA (Hu et al., 2021)

Gradient-based
(change optimizer)

e.g., GaLore (Zhao et al., 2024)

W

Optimizer

Opt. state

Optimizer

Opt. state

𝛁𝛁W𝚫𝚫W

W
❆

𝚫𝚫W

Relating memory-efficient methods
In a recent preprint (Torroba-Hennigen et al., 2025), we develop an equivalence
between two classes of memory-efficient training methods:

𝛁𝛁W

Adapter-based
(change model)

e.g., LoRA (Hu et al., 2021)

Gradient-based
(change optimizer)

e.g., GaLore (Zhao et al., 2024)

W

Optimizer

Opt. state

Optimizer

Opt. state

𝛁𝛁W𝚫𝚫W

W
❆

𝚫𝚫W

Type equation here.

𝑊𝑊 → 𝑊𝑊 + 𝐴𝐴𝑆𝑆⊤

𝜂𝜂 𝑊𝑊 → 𝜂𝜂 𝑊𝑊𝑆𝑆 𝑆𝑆𝑇𝑇
⇔

Relating memory-efficient methods
In a recent preprint (Torroba-Hennigen et al., 2025), we develop an equivalence
between two classes of memory-efficient training methods:

𝛁𝛁W

Adapter-based
(change model)

e.g., LoRA (Hu et al., 2021)

Gradient-based
(change optimizer)

e.g., GaLore (Zhao et al., 2024)

W

Optimizer

Opt. state

Optimizer

Opt. state

𝛁𝛁W𝚫𝚫W

W
❆

𝚫𝚫W

Type equation here.

𝑊𝑊 → 𝑊𝑊 + 𝐴𝐴𝑆𝑆⊤

𝜂𝜂 𝑊𝑊 → 𝜂𝜂 𝑊𝑊𝑆𝑆 𝑆𝑆𝑇𝑇
⇔

This duality allows us to use insights from one method to improve the other

Improvements via quantization
Drawing from the adapter literature (e.g., QLoRA; Dettmers et al., 2023), we can
improve gradient-based approaches by adding quantization

Optimizer

Opt. state

𝛁𝛁W 𝚫𝚫W

Improvements via quantization
Drawing from the adapter literature (e.g., QLoRA; Dettmers et al., 2023), we can
improve gradient-based approaches by adding quantization

Optimizer

Opt. state

𝛁𝛁W 𝚫𝚫W W
❆

Improvements via quantization
Drawing from the adapter literature (e.g., QLoRA; Dettmers et al., 2023), we can
improve gradient-based approaches by adding quantization

Optimizer

Opt. state

𝛁𝛁W 𝚫𝚫W W
❆

W❆

Improvements via rematerialization
Drawing from the gradient-based efficient training literature, we can consider
other choices of projections that can be implemented better in hardware

Optimizer

Opt. state

𝛁𝛁W 𝚫𝚫W

Improvements via rematerialization
Drawing from the gradient-based efficient training literature, we can consider
other choices of projections that can be implemented better in hardware

Optimizer

Opt. state

𝛁𝛁W 𝚫𝚫W

Seed Seed

This reduces memory consumption and (potentially) memory movement

Optimizer

Opt. state

𝛁𝛁W 𝚫𝚫W

Improving distributed training
We also find that for distributed training with poorly connected, memory-
constrained workers, choosing the right projections is important

Optimizer

Opt. state

𝛁𝛁W 𝚫𝚫W

Optimizer

Opt. state

𝛁𝛁W 𝚫𝚫W

Optimizer

Opt. state

𝛁𝛁W 𝚫𝚫W

Improving distributed training
We also find that for distributed training with poorly connected, memory-
constrained workers, choosing the right projections is important

Optimizer

Opt. state

𝛁𝛁W 𝚫𝚫W

Optimizer

Opt. state

𝛁𝛁W 𝚫𝚫W

Optimizer

Opt. state

𝛁𝛁W 𝚫𝚫W

Optimizer

Opt. state

𝛁𝛁W 𝚫𝚫W

Optimizer

Opt. state

𝛁𝛁W 𝚫𝚫W

Optimizer

Opt. state

𝛁𝛁W 𝚫𝚫W

<

Future work
Some directions we are considering to pursue next:

1. Single-node setting
• More complex projections
• In-register rematerialization

2. Distributed setting
• Reduce communication cost
• Reduce stall time when synchronizing gradients

Thanks!

	Hardware-efficient Neural Architectures for Language Modeling
	Transformers are ubiquitous
	LLM training process
	LLM training process
	LLM training process
	Memory bottlenecks
	Memory bottlenecks
	Memory bottlenecks
	Relating memory-efficient methods
	Relating memory-efficient methods
	Relating memory-efficient methods
	Relating memory-efficient methods
	Relating memory-efficient methods
	Improvements via quantization
	Improvements via quantization
	Improvements via quantization
	Improvements via rematerialization
	Improvements via rematerialization
	Improving distributed training
	Improving distributed training
	Future work
	Thanks!

