Hardware-efficient Neural
Architectures for Language
Modeling

Lucas Torroba-Hennigen, PhD Candidate, MIT CSAIL

== | School of MIT Schwarzman
I I I i Engineering := College of Computing



Transformers are ubiquitous



LLM training process

Training LLMs is done using an iterative process, based on gradient descent

Forward pass

S :

Schoolof =y MIT Schwarzman
Engineering =] College of Computing




LLM training process

Training LLMs is done using an iterative process, based on gradient descent

Forward pass Backward pass

Prediction

(Intermediate)

Activations Gradients

Schoolof =y MIT Schwarzman
Engineering =] College of Computing




LLM training process

Training LLMs is done using an iterative process, based on gradient descent

Forward pass Backward pass Update step

Prediction

(Intermediate)

Activations Gradients

Schoolof =y MIT Schwarzman
Engineering =] College of Computing




Memory bottlenecks

Memory usage adds up, even for moderate-sized LLMs:

varies 1 float/parameter 1 float/parameter ~2 float/parameter
140 GB (70B) 140 GB (70B) 280 GB (70B)

Schoolof [ MIT Schwarzman
Engineering =] College of Computing




Memory bottlenecks

Memory usage adds up, even for moderate-sized LLMs:

varies 1 float/parameter 1 float/parameter ~2 float/parameter
140 GB (70B) 140 GB (70B) 280 GB (70B)

So as models become larger, we are increasingly bottlenecked by memory, a
precious resource in GPUs

A100/H100 (~80GB) H200 (~140GB) B200 (~190GB)

Schoolof [ MIT Schwarzman
Engineering =] College of Computing




Memory bottlenecks

Memory usage adds up, even for moderate-sized LLMs:

varies 1 float/parameter 1 float/parameter ~2 float/parameter
140 GB (70B) 140 GB (70B) 280 GB (70B)

So as models become larger, we are increasingly bottlenecked by memory, a
precious resource in GPUs

A100/H100 (~80GB) H200 (~140GB) B200 (~190GB)

This has motivated a range of work in memory-efficient training methods that
decouple model size from the hardware used to train them
IMir

Schoolof [ MIT Schwarzman
Engineering =] College of Computing




Relating memory-efficient methods

In a recent preprint (Torroba-Hennigen et al., 2025), we develop an equivalence
between two classes of memory-efficient training methods:

Schoolof [ MIT Schwarzman
Engineering =] College of Computing




Relating memory-efficient methods

In a recent preprint (Torroba-Hennigen et al., 2025), we develop an equivalence
between two classes of memory-efficient training methods:

Adapter-based

(change model) | ;‘% + - .

e.g. LoRA (Hu et al.,, 2021)

Schoolof [ MIT Schwarzman
Engineering =] College of Computing




Relating memory-efficient methods

In a recent preprint (Torroba-Hennigen et al., 2025), we develop an equivalence
between two classes of memory-efficient training methods:

Adapter-based

(change model) | :% + - .

e.g. LoRA (Hu et al.,, 2021)

Gradient-based Opt. state
(change optimizer)

e.g., Galore (Zhao et al,, 2024) Optimizer — m Optimizer i\ .

Opt. state

Schoolof =y MIT Schwarzman
Engineering =] College of Computing




Relating memory-efficient methods

In a recent preprint (Torroba-Hennigen et al., 2025), we develop an equivalence
between two classes of memory-efficient training methods:

Adapter-based

(change model) W - W + AST

e.g. LoRA (Hu et al.,, 2021)

&
Gradient-based

(change optimizer) n (W) — n (Ws)sT

e.g., Galore (Zhao et al,, 2024)

Schoolof =y MIT Schwarzman
Engineering =] College of Computing




Relating memory-efficient methods

In a recent preprint (Torroba-Hennigen et al., 2025), we develop an equivalence
between two classes of memory-efficient training methods:

Adapter-based

(change model) W - W + AST

e.g. LoRA (Hu et al.,, 2021)

—

Gradient-based

(change optimizer) n (W) — n (Ws)sT

e.g., Galore (Zhao et al,, 2024)

This duality allows us to use insights from one method to improve the other

Schoolof [ MIT Schwarzman
Engineering =] College of Computing




Improvements via quantization

Drawing from the adapter literature (e.g., QLORA; Dettmers et al., 2023), we can
improve gradient-based approaches by adding quantization

Schoolof [ MIT Schwarzman
Engineering =] College of Computing




Improvements via quantization

Drawing from the adapter literature (e.g., QLORA; Dettmers et al., 2023), we can
improve gradient-based approaches by adding quantization

Opt. state
= 2
vw 8 opimizer & B IR + Dl

Schoolof [ MIT Schwarzman
Engineering =] College of Computing




Improvements via quantization

Drawing from the adapter literature (e.g., QLORA; Dettmers et al., 2023), we can
improve gradient-based approaches by adding quantization

Opt. state
= 2
vw 8 opimizer & B IR + Dl

|

& +

Schoolof [ MIT Schwarzman
Engineering =] College of Computing




Improvements via rematerialization

Drawing from the gradient-based efficient training literature, we can consider
other choices of projections that can be implemented better in hardware

Schoolof [ MIT Schwarzman
Engineering =] College of Computing




Improvements via rematerialization

Drawing from the gradient-based efficient training literature, we can consider
other choices of projections that can be implemented better in hardware

vw g B optimizer g o i I

This reduces memory consumption and (potentially) memory movement

Schoolof =y MIT Schwarzman
Engineering =] College of Computing




Improving distributed training

We also find that for distributed training with poorly connected, memory-
constrained workers, choosing the right projections is important

VW i Optimizer i aw i

Opt. state
m Optimizer g aw

Opt. state

m-» Optimizer M‘

School of
Engineering

5

MIT Schwarzman _
College of Computing



Improving distributed training

We also find that for distributed training with poorly connected, memory-
constrained workers, choosing the right projections is important

VW g g Optimizer o aw g vW Optimizer 4 aw 2

Opt. state Opt. state

- Em e ¢ -
Opt. state Opt. state

m Optimizer M‘ m Optimizer g aw 3=

Schoolof =y MIT Schwarzman
Engineering =] College of Computing




Future work

Some directions we are considering to pursue next:

1. Single-node setting
« More complex projections
 In-register rematerialization

2. Distributed setting
« Reduce communication cost
« Reduce stall time when synchronizing gradients

Schoolof [ MIT Schwarzman
Engineering =] College of Computing




Thanks!

e | School of MIT Schwarzman
I I I i Engineering := College of Computing



	Hardware-efficient Neural Architectures for Language Modeling
	Transformers are ubiquitous
	LLM training process
	LLM training process
	LLM training process
	Memory bottlenecks
	Memory bottlenecks
	Memory bottlenecks
	Relating memory-efficient methods
	Relating memory-efficient methods
	Relating memory-efficient methods
	Relating memory-efficient methods
	Relating memory-efficient methods
	Improvements via quantization
	Improvements via quantization
	Improvements via quantization
	Improvements via rematerialization
	Improvements via rematerialization
	Improving distributed training
	Improving distributed training
	Future work
	Thanks!

