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Transformers are ubiquitous



LLM training process
Training LLMs is done using an iterative process, based on gradient descent
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Memory bottlenecks
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So as models become larger, we are increasingly bottlenecked by memory, a 
precious resource in GPUs
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Memory bottlenecks

So as models become larger, we are increasingly bottlenecked by memory, a 
precious resource in GPUs

This has motivated a range of work in memory-efficient training methods that 
decouple model size from the hardware used to train them
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Relating memory-efficient methods
In a recent preprint (Torroba-Hennigen et al., 2025), we develop an equivalence 
between two classes of memory-efficient training methods:
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This duality allows us to use insights from one method to improve the other 



Improvements via quantization
Drawing from the adapter literature (e.g., QLoRA; Dettmers et al., 2023), we can 
improve gradient-based approaches by adding quantization

Optimizer

Opt. state

𝛁𝛁W 𝚫𝚫W



Improvements via quantization
Drawing from the adapter literature (e.g., QLoRA; Dettmers et al., 2023), we can 
improve gradient-based approaches by adding quantization

Optimizer

Opt. state

𝛁𝛁W 𝚫𝚫W W
❆



Improvements via quantization
Drawing from the adapter literature (e.g., QLoRA; Dettmers et al., 2023), we can 
improve gradient-based approaches by adding quantization

Optimizer

Opt. state

𝛁𝛁W 𝚫𝚫W W
❆

W❆



Improvements via rematerialization
Drawing from the gradient-based efficient training literature, we can consider 
other choices of projections that can be implemented better in hardware
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Improving distributed training
We also find that for distributed training with poorly connected, memory-
constrained workers, choosing the right projections is important
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Future work
Some directions we are considering to pursue next:

1. Single-node setting
• More complex projections
• In-register rematerialization

2. Distributed setting
• Reduce communication cost
• Reduce stall time when synchronizing gradients



Thanks!
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