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Link chip design to workflow management to data center architecture to
building footprint to power generation




Data centers consumed about 4.4 percent of total electricity in the United
States in 2023, expected to grow...
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Total Al energy demand highly uncertain — but the localized impact is
indisputable

o L
Google’s first data center in 2006: The Dalles, OR cost $600m Each the size of the
Empire State Building, laid
on its side across the
desert”

e T OpenAl announced plan to spend
' $100b in TX
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Typical CPU needs
250 to 500 watts to run, Gins .

GPUs use up to 1,000 R T
| watts.

https://www.costar.com/article/573467529/nations-first-stargate-
data-center-in-west-texas-is-already-in-expansion-mode



Variation in server types lead to differences in processor types, cooling
technologies and flexibility
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Air cooling versus liquid cooling, transition, and
temperature
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Current paradigm assumes unlimited and reliable power, we question
whether this can or should persist

Maximum
Available Power

Computer Energy

SYStems Energy flows from grid to datacenters. SYStems
(e.g., Datacenters) (e.g., Electric Grid)

Cost based on
total energy usage

Increased demand & Large power swings in Using low-carbon Specialized hardware &
higher power intensity training clusters & at energy introduces variable lifetimes
of Al workloads. various timescales. unique challenges. complicate operation.

Source: Noman Bashir
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Lead sustainable, strategic technology (Al) deployment i secisc
coupled with energy infrastructure modernization and MiTe;
decarbonization
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Need linked innovation in energy supply & compute demand to meet
data center needs

Critical ___Compute Demand: Hardware/Edge Devices Compute Demand: Systems & Architecture

focus
here:

Chandrakasan Casamento Cheema Del Alamo /ﬂi‘;z;d Delimitrou  Sanchez

Sze Belay

Energy Supply: Baseload Power Market Design & Regulatory Policy

Donti Perreault Knittel Demirer Parsons Wolfram

Brushett Chlang Buongiorno Baglietto

Real Estate & Building Energy Use

\! »
llic Annaswamy Amin

Zheng | l\l‘o.rfo{frd Reinhrt Mueller
* Inform, verify & minimize risk for site selection and operational decisions

* Accelerate availability and realization of 24/7 carbon-free energy data center power solutions
* Inform policies, quantify economic benefits for grid interconnection, rate design, etc.




Compute Demand: Decisions at one level in the compute stack have
ripple effects on energy, emissions, and performance throughout the

system
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Compute Demand: Systems & Architecture
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Traditional Focus: Reduce the
Resource and Energy Footprint
of Computing
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Compute Demand: Today’s Al systems tackle complex tasks
using multiple interacting components, workflows grow
ever deeper and self-improving
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Demonstrates speedups up to ~ 3.4x in workflow
completion times while delivering ~ 4.5x higher
energy efficiency

https://arxiv.org/pdf/2501.16634



Compute Demand: Compute-in-Memory evaluate design

choices at different levels of the stack, co-design across all

levels, compare different implementations, and rapidly
explore the design space.
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Load Management: Data Center power delivery needs
topologies capable of high (extreme) conversion ratios while | o
maintaining high efficiency and power density A\ N

Samantha Coday

i T
n

AC DC DC

DC DC DC

- . -. .
Generation Rectifier  Distribution | 1400 v- 48 V 48 V to PoL
Bus

Individual CPU/GPU ) Capacitively-isolated series-parallel
converter designed for +400 V to 48 V.

.

Designing converters which use (1) capacitive-based power
conversion with energy-dense capacitors as the primary
energy processing element (2) Partial power processing

which allows for further modularity, decreased component
stress and extreme conversion ratios (3) Input inductor

converters which allow for better vertical integration and
A 6:1 capacitively-isolated Cockcroft-Walton
thermal performance. converter used for PPP applications.




Load & Operations Management: Optimization-in-the-loop
machine learning for power systems

[ "\
v

Enabling decision-cognizant forecasting of
supply & demand coupled to feasible, tractable
approximations to power systems optimization Priya Donti

Decision-making: Given (uncertain) demand,
how do we schedule supply?
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Figure adapted from: US Congressional Budget Office
Source: Priya Donti



Market Design: Data Center Location driven by fiber network |
availability, electricity costs, reduce latency, customer proximity %
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Geographic distribution of data centers coupled
to excess generation versus load derived from
ISO hourly nodal electricity prices




Market Design and Policy: Evaluating the Impact of Data
Center Deployments on the Power System

Geographic Temporal L ‘
Long run: placement of data centers Load reducing computation burden for a given task (»,
Short run: shifting computation burden across Load shifting when a task is done Chris Knittel
data centers within the same firm MIT
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Grids need system-level policies informing
locations of large pockets of load and optimal
demand strategies for a cost-efficient transition
to a net-zero power system

A single data center firm offering grid flexibility
\ , harmed in the marketplace; Collective flexibility
System Cost Optimized Placement  ~ { - improve consumer & firm outcomes
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Building energy use: Multi-pronged approach including
use of structural frame as an effective heat sink

ROOF PANEL: NIGHT SKY RADIATIVE COOLING
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Leverage district heating and cooling systems and
use heat for absorption cooling in warm weather




Energy Supply: Integrating design of data center and »
energy supply through localized grids powered by
medium-to-large scale nuclear power stations

Emilio Baglietto lain Macdonald
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WATER TANKS

DATA HALLS HEAT REJECTION

High power density heat removal, innovations in liquid
cooling, immersion cooling and forced air cooling, without
the need for large water sources; Reduce power
. conversion infrastructure and minimize power

Advanced SMR+ transportation and distributions costs.




What’s the impact of this system? Consider the

full life cycle implications

Noman Bashir
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Benefit—cost evaluation frameworks that encourage Gen-Al to
develop beyond efficiency improvements to support social and
environmental sustainability goals alongside economic opportunity
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What are your challenges? Convene vital industry stakeholders across the
value chain to address future technologies, systems and architectures

Manufacture Operate Decarbonize

Chip Design Resilient Workload Scheduling

e Embodied vs operational tradeoff

: . e Model data movement costs
e Handle power fluctuations in hardware

e Energy, carbon, performance, and reliability

Datacenter Architecture Design Datacenter Demand Response
e Location-specific cooling, server types * Respond to electric grid’s DR signal
e Provide grid reliability services * Provide grid reliability services

Source: Noman Bashir
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